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Abstract

This thesis presents the development and application of a three-dimensional, two-

phase streamline simulator applied to �eld scale multiwell problems. The underlying

idea of the streamline method is to decouple the full 3D problem into multiple 1D

problems along streamlines. Fluids are moved along the natural streamline grid,

rather than between discrete gridblocks as in conventional methods. Permeability

e�ects and well conditions dictate the paths that the streamlines take in 3D, while the

physics of the displacement is captured by the 1D solutions mapped along streamlines.

In this work, the 1D solutions either represent tracer 
ow, water
ood displacements,

or �rst-contact miscible displacements. Solutions for these mechanisms are obtained

either analytically or numerically. If analytical solutions are mapped to streamlines,

the �nal 3D results are free from numerical di�usion, but the method can only be

applied to limited situations. By mapping numerical solutions to streamlines the

method has been extended to changing well conditions, nonuniform initial saturations,

and multiphase gravity e�ects.

The streamline simulator has been applied to �eld scale in�ll drilling and well

conversion problems. For a 100,000 gridblock problem, the streamline simulator was

over 100 times faster than an industry standard simulator. For simple 2D miscible

displacements dominated by gravity, the streamline method was almost 1000 times

faster than conventional methods. The speed of the streamline method also makes

it well suited to the solution of large problems. Examples of 106 gridblock multiwell

problems are solved on a conventional workstation and require about 2 CPU days.

The large speedup factors in the streamline method are a result of decoupling


uid transport from the underlying grid. Instead 
uids are moved along the natural

iv



streamline paths. Moving 
uids between gridblocks in conventional �nite-di�erence

models results in grid orientation e�ects and more importantly, time step limitations

due to stability and/or convergence considerations. Transporting 
uids along stream-

lines eliminates stability issues and the method is stable for any size time step. For

the same displacement, the streamline simulator requires on average one to three

orders of magnitude fewer time steps than a conventional �nite-di�erence simulator.
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Chapter 1

Introduction

The main goal of any reservoir simulation method is to predict 
ow performance of oil

recovery processes. The more realistic the reservoir model and the reservoir simulator

are, the more accurate is the answer produced.

Many advancements have been made in geostatistical methods and their ability

to construct realistic reservoir images. Models on the order 106 to 107 gridblocks are

routinely generated. It is also well known that deterministic information about sub-

surface properties is limited, therefore present day reservoir engineers and geologists

prefer a stochastic description of the reservoir. In other words, many images of the

reservoir that honor hard well data can be routinely generated, each model containing

millions of gridblocks.

The ability to solve large models in reservoir simulators has not kept pace with the

advances in geostatistical methods. One solution to simulator improvement is based

on computer hardware advances. For example, large problems are solved by domain

decomposition methods on parallel machines. The size of the problem and the speed

of the simulator is directly related to the number of processors and their speed. A

second approach is to improve the e�ciency of the simulation method itself. This

is the goal of the streamline method discussed here. With some assumptions, the

streamline method e�ciently uses standard computer resources to model �eld scale

displacements of large models both faster and more accurately than conventional

methods.

1



2 CHAPTER 1. INTRODUCTION

The underlying idea of the streamline method is to decouple the governing equa-

tion of 
uid motion to the full 3D problem into multiple 1D problems solved along

streamlines. The solution to the pressure �eld dictates the paths of the streamlines in

space while the physics of the displacement is captured in an appropriate 1D solution

solved along each streamline. In this manner, 
uids are moved along the natural

streamline grid rather than between discrete gridblocks, as in conventional meth-

ods. The advantage of the streamline technique is that the stability constraint of the

underlying grid is e�ectively decoupled from the solutions solved along streamlines.

Thus, very large convective time steps can be taken with the streamline method.

Furthermore, for heterogeneous systems the pressure �eld is a weak function of 
uid

properties. This implies that the pressure solution only needs to be updated a few

times throughout a displacement process to accurately capture the nonlinearity in the

pressure �eld. The ability to take large convective time steps and only update the

streamline paths periodically are the primary reasons that the streamline method is

orders of magnitude faster than conventional methods. Because of grid constraints,

conventional methods take very small time steps resulting in recalculating the pres-

sure �eld and saturation �eld many times { a numerically expensive process.

1.1 Field Scale Displacements

The application of the streamline method is presented in the context of modeling �eld

scale displacements. The variables that in
uence �eld recovery performance, and how

the streamline method can best capture these in
uences, are considered. Many au-

thors have shown that correlated heterogeneity has a �rst-order e�ect on displacement

predictions { see for instance [35, 42, 77]. Any simulation method that models �eld

scale displacements must capture heterogeneity in as much detail as possible. The

streamline method is well suited to honoring heterogeneity e�ects. However, in com-

parison with conventional simulation techniques, the streamline method sacri�ces the

ability to capture secondary displacement e�ects like capillary cross-
ow or transverse

di�usion, for an improved characterization of heterogeneity and its impact on 
ow.

Gravity e�ects can also dominate at the �eld scale. For example, many �elds
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are produced in a manner to take advantage of gravity forces to improve on �eld

displacement e�ciency. For all but the simplest displacements, gravity e�ects are

di�cult to account for with streamline methods since the gravity vector is seldom

aligned with a streamline path. Gravity e�ects in the streamline method are modeled

using an operator splitting technique, which corrects 
uid positions in the vertical

direction after they have been moved convectively along streamlines. Conceivably,

any other mechanism that is deemed important at the �eld scale could be accounted

for in a similar operator splitting manner and viewed as a corrective step. This work

assumes that only well conditions, heterogeneity, gravity and 
uid mobilities are the

main forces dictating a displacement.

1.2 Analytical Solutions Along Streamlines

Along each streamline in 3D space, a governing 1D solution to the conservation equa-

tion exists. The solution to this equation can be obtained analytically under certain

conditions. The main requirement for an analytical solution is uniform initial con-

ditions along a streamline path. Strictly speaking, uniform initial conditions along

streamlines only exist for �xed streamline paths that do not change with time. A key

idea of the streamline method presented here is that streamline paths are updated

to honor the changing mobility �eld. Thiele et al. [69] [70] [71] have shown that for

displacements dominated by heterogeneity (and �xed well conditions), uniform ini-

tial conditions along recalculated streamline paths can be assumed without loss of

solution accuracy.1

Permeability has a �rst order e�ect on simulation results, implying that greater

resolution in permeability is desirable. Furthermore, permeability models are stochas-

tic making it equally important to evaluate the equiprobable images of a reservoir

model to predict uncertainty in a simulation forecast. Conventional simulation meth-

ods will sacri�ce reservoir detail and processing of multiple reservoir images for im-

proved speed. The result is a single forecast which is typically optimistic due to the

1See Chapter 2 for a detailed literature review of streamline and streamtube methods.
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lack of heterogeneity detail. The streamline method however, is ideally suited to cap-

turing the �rst order e�ects in 
ow simulations. As will be shown, large models can

be run very quickly, making the streamline method a useful tool to process multiple

realizations quickly.

Chapter 4 investigates the application of the streamline method to multiwell 3D

displacements. Tracer, water
ood, and �rst-contact miscible (FCM) analytical solu-

tions are mapped along the streamlines. All models are assumed to be heterogeneity

dominated. Recalculating the streamline paths to honor the changing mobility �eld

yields excellent agreement with conventional �nite-di�erence methods, but results are

generated in a fraction of the time.

1.3 Numerical Solutions Along Streamlines

The goal of this work is to predict �eld scale reservoir simulations using streamline

methods. Most reservoir displacements are a�ected by gravity, and have well man-

agement schemes that include in�ll drilling and producer-injector conversions. When

streamline paths are updated as a displacement proceeds, nonuniform 
uid satu-

rations exist along the recalculated streamline paths. Analytical solutions are not

available for general nonuniform initial conditions. As a result, the method of Chap-

ter 4 cannot account for gravity or changing well conditions. However, there is no

restriction to the method of solution of the 1D equations mapped along streamlines.

Chapters 5 and 6 investigate the extension of the streamline method to mapping

numerical solutions along streamline paths. The method is general and can be applied

to homogeneous as well as heterogeneity dominated displacements. A key feature

when mapping numerical solutions is that streamlines now communicate with each

other at a gridblock scale. This is a result of only knowing saturation information

to within a gridblock scale. Thus the numerical solutions do contain some mixing.

However, the mixing in the streamline method is less than that present in conventional

simulators caused by numerical di�usion.
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1.4 Concluding Remarks

The streamline method developed in this work has been implemented in a Fortran 90

code called 3DSL (3-Dimensional StreamLines). The focus of this work is accurate

modeling of �eld scale 
ow through porous media. As such, 3DSL only has simple

well models, and no facility constraints. Even with these limitations, 3DSL is still a

very powerful tool for modeling 
ow under a variety of displacement mechanisms.



Chapter 2

Literature Review

There are numerous examples of the use of streamlines and streamtubes to model 
ow

in porous media, both in the petroleum and the groundwater literatures. General

references include Muskat [57] and Bear [8]. Additionally, Thiele [68] provides a

detailed literature review of streamtube methods.

A review of streamtube and streamline methods is given in the following sections.

As streamtubes and streamlines are very similar, there is some overlap among the

sections. Also included is a brief review of front tracking methods, which are evolving

to be similar to the streamline method presented in this work. Finally, a section

reviewing the impacts of reservoir heterogeneity on 
ow simulations is also included.

2.1 Streamtube Methods

Muskat [57] in 1937 gave an early description of the governing analytical equations

that de�ne the stream function, 	, and the potential function, �, in simple two-

dimensional domains for incompressible 
ow. A notable work with these de�nitions

was by Fay & Pratts [29] who in 1951 developed a numerical model to predict tracer

and two-phase 
ow in a two-well homogeneous 2D system. Fay & Pratts recognized

that the streamlines would shift positions for two 
uid problems as a displacement

proceeded. To account for this, they tracked the position of the intersection of the 
uid

front with the instantaneous streamlines (intersection given by �	 lines). However,

6
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they did admit that no simple numerical method was found to track the �	 lines.

Thus, their two-phase results contained some inaccuracies.

Higgins & Leighton [39, 40] introduced the idea of using streamtube bundles to

model multiphase displacements in porous media. Each streamtube was treated as a

one-dimensional system, along which Buckley-Leverett [16] solutions could be mapped.

In their model, the streamtube bundles were �xed throughout the displacement life.

Instead, to account for a changing mobility �eld, the resistance within each tube was

updated as a displacement proceeded. Subsequent injection volumes into streamtubes

were then based on tube resistances, such that tubes with high mobility 
uid (low

resistance) received proportionately more injection than tubes with low mobility 
uid.

They showed good agreement with experimental and numerical results for mobility

ratios from 1 to 800.

Martin et al. [52] noted that the �xed streamtube method failed for a favorable

mobility ratio M=0.1 and gave poor results for mobility ratios greater than 100.

Martin et al. reached a di�erent conclusion than Higgins & Leighton [40] because they

used greater curvature in their relative permeability curves, which in turn reduced the

velocity of the Buckley-Leverett shock. Thus, the change in mobility occurred over a

shorter distance increasing, the nonlinearity of the displacement. For this situation,

they showed that streamtube paths behind the injection bank are relatively constant

but the streamtube paths ahead of the bank change considerably. By recalculating

the streamtube paths periodically, the new method worked well for M < 1 and for

M > 100. However, recalculating streamline paths introduces nonuniform initial

conditions along new streamlines. To overcome this problem, Martin et al. used a

numerical approach to move saturations along updated paths, as described next.

Martin & Wegner [51] extended their previous method to multiwell, two-phase

problems.1 They calculated the value of the stream function (	) numerically on a two-

dimensional discretized domain. The 	 function then de�ned streamtubes. Martin

& Wegner updated the streamtubes to honor the changing mobility �eld and mapped

the original saturations to the new streamtube locations. The original saturations

were then moved forward in time based on knowledge of the local saturation velocity

1Multiwell problems refers to more than two wells.
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and the total 
ow rate into the tube. Because the total 
ow rate at the new time step

was not known until the new saturation pro�le was known, they would iterate the

procedure until the calculated 
ow rate no longer changed. Their mapping technique

worked well since saturation velocities along streamlines were ordered from slow to

fast. The method would breakdown if fronts collided (i.e.: faster saturations upstream

of slower saturations). Martin & Wegner'smethod was similar to Higgins & Leighton's

in that 
ow rates in tubes changed as the mobility �eld changed.

The advantage of all the streamline/streamtube methods discussed so far was

that they were faster and more accurate than equivalent conventional �nite-di�erence

simulations. However, the method was only applicable to 2D problems for simple

displacement mechanisms.

Lake et al. [48] combined an areal streamtube model with a �nite-di�erence simu-

lator to simulate a large-scale surfactant/polymer 
ood. The physics of the polymer

displacement and layer heterogeneity were incorporated into representative 2D cross-

sectional �nite-di�erence simulations. The resulting production pro�les were then

mapped to areal streamtube patterns giving a hybrid 2D+2D approach.

Emmanuel et al. [27] and Mathews et al. [54] recognized that detailed reservoir

descriptions of heterogeneity improved the accuracy of forecasts. Conventional sim-

ulation methods could not adequately solve the large models built to satisfy the

improved reservoir descriptions. Again, they used hybrid streamtube models for this

purpose. The displacement physics in this case, WAG displacements, layer hetero-

geneity, and gravity override, were contained in an appropriate 2D numerical simu-

lation. The resulting fractional 
ow curves from the simulations were then mapped

along streamtubes calculated using the method of Martin & Wagner. Not only did

they conclude that the hybrid model was faster than conventional methods, but they

found that accounting for increased heterogeneity yielded a result that matched actual

�eld performance without history matching or adjustment of data.

Renard [62] developed a 2D streamtube method that included periodic regenera-

tion of the streamtubes to account for changing well positions and changing mobility

�elds. Renard used a stepwise process to trace the streamlines that would then de�ne

streamtubes, but noted that the stepwise process was inaccurate for sharply bending
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streamlines near boundaries or source/sinks. Unfortunately, Renard does not say how

the 1D solutions were moved forward in time along streamtubes.

Thiele et al. [69, 70, 71] used a streamtube method to model highly nonlinear

displacements in 2D cross-sections.2 To honor the changing mobility �eld, Thiele et

al. proposed periodically recalculating streamtube paths. They abandoned the idea of

calculating tube resistances (Higgins & Leighton method) because the method failed

to properly model nonlinear displacements [68]. Thus, all streamtubes contained the

same 
ow rate for a given time step. Instead, to honor the changing mobility �eld,

the tube sizes would change. Analytical solutions were then mapped along recalcu-

lated paths. While they admit that periodic recalculation of paths was slower than

the Higgins & Leighton procedure, the method accurately predicted breakthrough

performance for highly nonlinear displacements. Thiele et al. used the method to

study water
ooding, FCM, and compositional displacements. The major assumption

of mapping analytical solutions to recalculated paths, was that 
ow was governed

by heterogeneity such that the streamtube paths did not change greatly from time

step to time step. Additionally, because streamtube paths remained relatively �xed,

very large time steps could be taken yet still capture the displacement nonlinear-

ities. The result was a streamtube method that accurately modeled heterogeneous

FCM and compositional displacements with 3 to 5 orders-of-magnitude speed-up over

conventional methods.

The obvious extension of the above streamtube models is to three-dimensional

systems. The key leap from 2D to 3D systems is being able to de�ne streamtubes

in 3D. As early as 1957, Yih [80] presented a de�nition of the stream function for

three-dimensional incompressible 
ow. The 3D stream function is de�ned by the

intersection of two sets of orthogonal stream surfaces with four intersection points

de�ning a 3D streamtube. Nelson [58] extended Yih's method to heterogeneous sys-

tems. Both works discuss the mathematical de�nition of 3D stream functions and do

not speci�cally model 
ow displacements. The primary di�culty of 3D streamtubes

is that they become complicated geometrical objects in 3D. Zijl [81] and Matanga

2Nonlinear displacements are characterized by a changing velocity �eld as a displacement
proceeds.
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[55, 53] have presented 3D streamtube methods applied to simple single phase het-

erogeneous displacements in groundwater 
ow. Recently, Hewett & Yamada [36] have

presented the theory for a semi-analytical 3D streamtube method for multiphase 
ow

that does not rely on the construction of a 3D streamfunction.

2.2 Streamline Methods

The majority of published work on streamlines has been in the groundwater liter-

ature. While the applications vary, this review will only concentrate on streamline

results relevant to methods of accurately predicting streamline paths in 3D space, and

methods to map conservation equations to the streamlines. As already discussed, Fay

& Pratts presented an early work in the petroleum literature that uses streamlines in

2D.

All 3D streamline methods use particle tracking ideas to de�ne a streamline.

Shafer [64] traced particle from sinks to sources using a Runge-Kutta technique.

By keeping track of the time to travel on each streamline, Shafer then determined

capture zones for producers based on a desired isotime surface. Shafer's method

was applied to 2D heterogeneous multiwell systems. Pollock [61] improved on the

Runge-Kutta tracing by de�ning a piece-wise linear interpolation of the velocity �eld

within a gridblock. The same method was developed by Datta-Gupta & King [24].

The result was an algorithm which analytically de�ned a streamline path within a

gridblock. Other interpolation schemes for gridblock velocities also exist but they are

not consistent with the governing 
ow equation [34].

To improve on the 
ow physics that a streamline method could account for, Bom-

mer & Schecter [11] mapped general numerical conservation equations along stream-

lines. The numerical solution accounted for dispersion and reaction of components

along the streamline direction, while the areal streamline paths accounted for well

distributions. Bommer & Schecter's method was 2D and streamline tracing was per-

formed using a simple step-wise method to move between gridblocks.

Datta-Gupta & King [24] introduced the \time-of-
ight" concept along a stream-

line. This idea was used by King et al. [44] to model FCM displacements in 2D
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heterogeneous cross-sections by scaling 1D Todd-Longsta� [73] FCM solutions along

streamlines. Rather than updating streamline paths to account for the changing mo-

bility �eld, streamlines were assigned boost factors based on the overall pressure drop

along a streamline. This method correctly placed high mobility 
uid into the least

resistant streamlines. The main focus of their work was to evaluate reservoir hetero-

geneity on FCM displacements. The streamline method provided a tool 104 times

faster than conventional high-resolution methods that would capture heterogeneity

e�ects without sacri�cing 
ow physics. Datta-Gupta & King [24] also presented a

streamline model for 2D heterogeneous areal displacements of two-well tracer and

water
ood problems.

Recently, the streamline method has been extended to true 3D systems by Blunt

et al. [10] and includes longitudinal and transverse di�usion and gravity e�ects in

FCM displacements. Thiele et al. [69] also present 3D streamline results and extend

the method to multiwell situations as well as accounting for the changing mobility

�elds in multiphase displacements. These latter ideas are described and expanded

on in this work. Most recently, Peddibhotla et al. [60] presented a 3D multiwell �xed

streamline technique.

2.3 Front Tracking Methods and Operator Split-

ting

Front tracking methods are applicable to 
ow in porous media since the basic mass

conservation equation can be written in a hyperbolic form. Front tracking amounts

to discretizing a rarefaction wave into a series of shocks (fronts) with each shock

speed predicted by a Rankine-Hugoniot condition. The fronts are then moved along

an underlying grid based on knowing the front speed and the underlying velocity

pro�le. An integral part of front tracking in multiple dimensions is operator splitting,

whereby fronts are moved independently in each grid coordinate direction. The �nal

front position is then the sum of the multiple movements in each direction.

The above ideas were formally presented by Glimm et al. [32] and applied to a 2D
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quarter �ve-spot problem for various mobility ratios and levels of heterogeneity. The

method was very accurate and exhibited little numerical di�usion or grid orientation

e�ects. It is worth noting that prior to Glimm, Fay & Pratts [30] and Martin & Weg-

ner [51] used simpli�ed one-dimensional front tracking methods (moving interface)

along streamlines to perform recovery calculations. Their methods were simple since

they could not account for colliding fronts that would occur when upstream front

velocities were higher than downstream front velocities.

Front tracking methods with gravity were presented by Glimm et al. [33] and

Colella et al. [22] applied to 2D problems. Gravity was accounted for by operator

splitting in the vertical direction. Kocberber & Miller [46] presented a novel front

tracking method for three-dimensional systems that tracked fronts along grid element

boundaries. The element boundaries were de�ned areally based on streamlines and

equipotential lines and vertically based on a simple layered system. Periodically the

elements would be regenerated as the fronts moved positions. Their method was

applied to 2D vertical gravity displacements and areal two-well displacements, and

showed minimal dispersion. Bratvedt et al. [12, 13] presented a similar front tracking

method as that of Glimm et al. [33], but extended the method to full 3D systems

with multiple wells. Their ideas were implemented in the commercial code FRONTSIM,

and noted that their code was more CPU e�cient and su�ered from less di�usion and

grid orientation e�ects than conventional methods.

Bratvedt et al. [13] also discuss a front tracking method along streamlines applied

to 2D areal domains. Tracking fronts along streamlines resulted in less grid orienta-

tion e�ects than standard front tracking methods along grid coordinates. Tijink et

al. [72] used the same streamline front tracking method to study areal problems of

contaminant migration. Most recently, Bratvedt et al. [14] have presented 2D cross-

sectional water
ood results of a streamline front tracking method that accounts for

gravity. Gravity e�ects are accounted for by operator splitting such that 
uids are

moved convectively along streamlines then vertically due to gravity e�ects. This is

the same method that is used in this work.
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2.4 Streamline Methods and Heterogeneity

Heterogeneity strongly in
uences reservoir recovery. Because of speed, streamline/

streamtube models are ideally suited to studying heterogeneity e�ects.

Hewett & Behrens [37] used a streamtube simulator to evaluate the e�ect of frac-

tal heterogeneity descriptions on 
ow simulations. They noted that 
ow results from

fractal realizations showed greater channeling, earlier breakthrough, and reduced re-

covery than results with less heterogeneous permeability distributions. Because of

the uncertainty associated with the �ne scale heterogeneities, Hewett & Behrens ad-

ditionally used the streamtube model to predict the uncertainty in recovery. The

speed of the streamtube simulator allowed them to study multiple realizations of

detailed models quickly.

The use of hybrid streamtube models as discussed by Emanuel et al. [27] and

Mathews et al. [54] assumed that the collapsed 2D cross-sectional models mapped

along streamtubes scaled linearly with displacement distance traveled. For 2D misci-

ble and immiscible displacements Hewett & Behrens [35, 38] noted that linear scaling

behavior did occur when 
ow was dominated by correlated heterogeneity. Thus the

hybrid method properly modeled heterogeneity dominated 
ow. A related conclusion

was that physical dispersion was 
ow length dependent (convection-dominated dis-

persion due to heterogeneity) and could not be accounted for by an e�ective dispersion

coe�cient within a 1D pro�le.

Datta-Gupta et al. [25] studied inverse modeling by using the 2D streamline model

described by Datta-Gupta & King [24] to �rst generate type curves of tracer response

for di�erent heterogeneity indexes. The speed of the streamline model made it ideally

suited to the multiple runs required to generate the type curves. Once type curves

were obtained, a tracer pro�le could be mapped to the type curves in order to obtain

heterogeneity parameters.

Thiele et al. [69] used the speed of the streamline method to screen multiple images

under a variety of displacement mechanisms. An important conclusion was that the

uncertainty due to multiple heterogeneous images was accurately captured by the

streamline method in a fraction of the time required for even a single �nite-di�erence
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displacement result.

2.5 Concluding Remarks

Although streamline methods have been greatly extended in recent years, there are

still limitations. To extend the streamline method to more general situations, a

combination of novel ideas developed by several of the above authors is used. The

streamline tracing method of Pollock [61] and Datta-Gupta & King [24] is used to

trace analytical streamline paths in three-dimensions. After Thiele [68], the stream-

line paths are periodically recalculated to honor the changing mobility distribution.

Analytical solutions are mapped to streamlines using Thiele's [68] approach. To gen-

eralize the streamline method to account for �eld situations, numerical solutions are

mapped to streamlines as proposed by Bommer & Schecter [11]. Lastly, multiphase

gravity e�ects are introduced in an operator splitting technique similar to that of

front tracking methods [14, 33].
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Mathematical Model

3.1 Introduction

The streamline simulator involves two components; (i) tracing the streamline paths,

and (ii) mapping 1D solutions along the streamlines. This chapter focuses on the

steps required to trace the streamline paths in a 3D system for an arbitrary number of

injection and production wells. Tracing streamlines requires a solution for the pressure

�eld. Mapping of 1D solutions along streamlines, which results in determining phase

distributions, is discussed in Chapters 4 and 5.

3.2 The Governing IMPES Equations

The streamline simulator is based on solving �rst for the pressure �eld and then for

the saturation distribution. This is an IMplicit in Pressure, Explicit in Saturation

method (IMPES). For conventional �nite-di�erence methods, one advantage of an

IMPES formulation over the fully-implicit formulation is that numerical di�usion due

to discretization error is reduced. The trade-o� is that smaller time step sizes must

be taken due to stability considerations.

Here, the governing pressure and saturation equations for multiphase 
ow used in

the streamline method are derived. The governing equation for 
ow of a component

15
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i with np phases 
owing in a porous medium is de�ned by Lake [49] as,

npX
j=1

(
@

@t
(�!ij�jSj) +r � (!ij�j~uj � ��jSj

~~Dij � r!ij) = qs�j!ij

)
; (3.1)

where qs represents a source or sink volume 
ow rate,
~~Dij characterizes the component

dispersivity, !ij is the mass fraction of component i in phase j, and ~uj is the phase

velocity given by Darcy's Law,

~uj = �
~~Kkrj
�j

� (rPj + �jgrD): (3.2)

The phase pressure is Pj, D is the depth, and g is the gravitational constant. To

simplify Eq. 3.1 it is assumed that the 
uids are incompressible (�j =constant) and

there is no dispersivity (
~~Dij=0) giving,

npX
j=1

(
@

@t
(�!ijSj) +r � !ij~uj = qs!ij

)
; (3.3)

Next, summing Eq. 3.3 over all the components and using the fact that
Pnc

i=1 !ij = 1

gives,

r � ~ut = qs; (3.4)

the governing volume balance equation for incompressible 
ow. The total velocity ~ut

can be de�ned by summing Eq. 3.2 over np phases to give,

~ut = �
~~K � (�trP + �grD): (3.5)

Capillary pressure has been neglected such that P = Pj. The total mobility (�t) and

total gravity mobility (�g) are de�ned as,

�t =
npX
j=1

krj
�j

; �g =
npX
j=1

krj�jg

�j
: (3.6)

Finally, combining Eq. 3.4 and Eq. 3.5 leads to the governing pressure equation for

multiphase incompressible 
ow in porous media,

r �
~~K � (�trP + �grD) = �qs: (3.7)
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Eq. 3.7 is elliptic and is known as a Poisson equation where the unknown is P . Once

P is de�ned, ~ut can be determined by using Eq. 3.5.

The governing saturation equation for the IMPES method can be derived from

Eq. 3.3. To simplify the problem, it is assumed that the phases are immiscible such

that !ij=0 for i 6= j and !ij=1 for i=j giving,

�
@Sj
@t

+r � ~uj = qsfj;s; (3.8)

Substituting Darcy's Law, Eq. 3.2, into Eq. 3.8 and eliminating rP by using Eq. 3.5

the above equation becomes,

�
@Sj
@t

+r�

0
@ krj=�jPnp

m=1
krm
�m

~ut +
~~K � grD

krj=�jPnp
m=1

krm
�m

npX
m=1

krm=�m(�m � �j)

1
A = qsfj;s: (3.9)

De�ning the standard Buckley-Leverett fractional 
ow term as,

fj =
krj=�jPnp

m=1 kmj=�m
; (3.10)

and a gravity fractional 
ow term given by,

~Gj =
~~K � grD

krj=�jPnp
m=1

krm
�m

npX
m=1

krm=�m(�m � �j); (3.11)

Eq. 3.9 can be rewritten as

�
@Sj
@t

+r � fj ~ut +r � ~Gj = qsfj;s: (3.12)

Given that r � ~ut=0 for incompressible 
ow, the governing saturation equation of an

individual phase becomes,

�
@Sj
@t

+ ~ut � rfj +r � ~Gj = qsfj;s: (3.13)

The saturation equation is hyperbolic.

Eq. 3.7 and Eq. 3.13 form the governing set of nonlinear equations for the IMPES

method to be used in the streamline simulator. They are nonlinear since coe�cients

in each equation are dependent on the unknown variables (P or Sj). Although the
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equations are closely coupled together, they are di�erent in mathematical behavior

and as such can be solved di�erently. This is the underlying idea of the streamline

IMPES method. Unlike a conventional �nite-di�erence IMPES method, the use of

streamlines allows one to transform Eq. 3.13 into a pseudo 1D equation, as discussed

in Section 3.7.

3.3 Solution of Pressure Equation

3.3.1 Numerical Representation of Pressure Equation

For the streamline method, the reservoir is divided into a Cartesian grid system, as

can be done in a conventional simulation. For simplicity, a regular Cartesian grid is

assumed, but it is possible to extend the method to account for local grid re�nement,

non-neighbor connections, or varying gridblock elevations within a given layer. The

governing pressure equation (Eq. 3.7) is solved by a standard �nite-di�erence method

on the Cartesian grid. For a thorough discussion of �nite-di�erence methods in reser-

voir simulation see Aziz & Settari [3]. The discretized form of Eq. 3.7 in 3D using a

seven-point stencil on a Cartesian grid about an arbitrary gridblock at location i; j; k;

is given by,

Tz;k� 1

2

Pi;j;k�1 + Ty;j� 1

2

Pi;j�1;k + Tx;i� 1

2

Pi�1;j;k

�Pi;j;k(Tz;k� 1

2

+ Ty;j� 1

2

+ Tx;i� 1

2

+ Tz;k+ 1

2

+ Ty;j+ 1

2

+ Tx;i+ 1

2

)

Tz;k+ 1

2

Pi;j;k+1 + Ty;j+ 1

2

Pi;j+1;k + Tx;i+ 1

2

Pi+1;j;k =

Gz;k� 1

2

Di;j;k�1 +Gy;j� 1

2

Di;j�1;k +Gx;i� 1

2

Di�1;j;k

�Di;j;k(Gz;k� 1

2

+Gy;j� 1

2

+Gx;i� 1

2

+Gz;k+ 1

2

+Gy;j+ 1

2

+Gx;i+ 1

2

)

+Gz;k+ 1

2

Di;j;k+1 +Gy;j+ 1

2

Di;j+1;k +Gx;i+ 1

2

Di+1;j;k

�qs;i;j;k (3.14)

This notation assumes that the k index is in the z coordinate direction, the j index is

in the y coordinate direction, and the i index is in the x coordinate direction. For a

block centered grid, the harmonic mean of the inter-block transmissibility is de�ned
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as,

Tz;k+ 1

2

=
2�xk�yk

�zk
�t;kKz;k

+ �zk+1
�t;k+1Kz;k+1

; (3.15)

where �x, �y, �z represent the gridblock dimensions. Similarly, the harmonic mean

of the inter-block gravity transmissibility is de�ned as,

Gz;k+ 1

2

=
2�xk�yk

�zk
�g;kKz;k

+ �zk+1
�g;k+1Kz;k+1

: (3.16)

In Eq. 3.14, qs;i;j;k represents a source/sink 
ux in the i; j; k block. Injection is assumed

to be positive while production is assumed to be negative.

3.3.2 Boundary Conditions

Boundary conditions for the solution to Eq. 3.14 are de�ned at wells and the no-
ow

boundaries of the surface of the reservoir model. The well model within the streamline

simulator is simplistic relative to those found in standard �nite-di�erence simulators.

However, the model is satisfactory for testing the streamline ideas. For a detailed

description of well models in �nite-di�erence simulators see Aziz & Settari [3].

For any well, either pressure or total rate can be speci�ed. The streamline simu-

lator assumes that a well is modeled with variable density gradient in the wellbore,

but no friction losses. The governing equation for a well with nl layers is given by,

qs =
nlX
k=1

Tw
k [P

w
k � Pk]; (3.17)

where Pw
k is the pressure in the wellbore and Pk is the pressure in the gridblock. The

well layer transmissibility, Tw
k , is given by,

Tw
k =

2��zk
ln(

ro;k
rw;k

) + sk
�wt;k; (3.18)

where sk is the skin factor, ro;k is Peaceman's radius [59], and rw;k is the wellbore

radius. The wellbore mobility �wt;k is assumed to be the gridblock mobility for pro-

duction wells, and the injection phase mobility for injection wells.
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Finally, for multilayer wells, each layer's well pressure is related to the well pressure

of the top well gridblock completion (k�). A variable density gradient wellbore is

assumed giving the following relationship,

Pw
k = Pw

k� + 0:5
kX

i=k�+1

(
i�1 + 
i)(Di �Di�1) (3.19)

where the wellbore speci�c gravity, 
i, at the i
th layer can be calculated by,


i =
�g;i
�t;i

: (3.20)

For producers 
i is calculated from the block properties, while for injectors 
i is

calculated from the injection phase properties. Combining Eq. 3.17 and Eq. 3.19

gives the governing well equation,

qs =
nlX
k=1

Tw
k [P

w
k� � Pk + 0:5

kX
i=k�+1

(
i�1 + 
i)(Di �Di�1)]: (3.21)

The unknown in the above equation is either Pw
k� for a well speci�ed with a total rate

constraint, or qs for a well speci�ed with a pressure constraint.

3.3.3 Numerical Solution of Pressure Matrix

Grouping Eq. 3.14 and Eq. 3.21 and separating out the unknown gridblock pressures

gives the governing set of discretized equations to be solved. In matrix form the

equation set appears as

T~P = ~B; (3.22)

where T contains the well and gridblock transmissibility terms from Eq. 3.14 and

Eq. 3.21. For the IMPES method, T is a symmetric matrix. The vector ~P contains

the unknown pressure values at all gridblocks and the unknown well pressures. The

vector ~B contains gridblock transmissibility and gravity terms, well source or sink

terms, and well terms where Pw
k� is de�ned.

Eq. 3.22 forms a linear set of equations with all saturation dependent terms eval-

uated at the previous time step, while P is determined at the current time step.

The solution to Eq. 3.22 does not require initial pressure information. However, to
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uniquely de�ne the solution, the pressure of at least one well must be de�ned (Dirich-

let boundary condition).

Eq. 3.22 represents a large sparse linear system of equations which is solved by

an iterative method. The details of the method are beyond the scope of this work.

Eq. 3.22 was solved using one of two methods: conjugate gradient method (JCG

from the ITPACK library [43]) or a multigrid method (AMG by GMD [66]). For

all problems containing more than � 1000 gridblocks, the multigrid solver o�ered

superior speed compared with the conjugate gradient solver. All solutions presented

in this thesis used the multigrid solver.

3.4 Determining the Velocity Field

Once the pressure �eld has been determined, the �eld of velocity vectors is de�ned in

order to trace streamline paths. Darcy's Law (Eq. 3.5) applied between two pressure

nodes de�nes the gridblock interface total Darcy velocity as,

ut;k+ 1

2

=
Tz;k+ 1

2

Ak+ 1

2

(Pk+1 � Pk) +
Gz;k+ 1

2

Ak+ 1

2

(Dk+1 �Dk); (3.23)

where Ak+ 1

2

represents the cross-sectional area of the gridblock interface. To de�ne a

velocity vector at a gridblock face, the �nal step requires converting the Darcy velocity

into an interstitial velocities (vt) by dividing by gridblock porosity. The interstitial

velocity is then de�ned at the gridblock face in a direction normal to the face.

3.5 Analytical Streamline Path Description

A streamline is de�ned as the instantaneous curve in space along which every point is

tangent to the local velocity vector [8]. Tracing streamlines from injectors to producers

is based on the analytical description of a streamline path within a gridblock as

outlined by Pollock [61]. The underlying assumption is that the velocity �eld in each

coordinate direction varies linearly and is independent of the velocities in the other

directions. Pollock's method is attractive because it is analytical and consistent with

the governing material balance equation.
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Figure 3.1: Schematic of a streamline path through a 2D gridblock of dimensions �x
by �y.

Consider the two-dimensional gridblock in Fig. 3.1, for which we know the inter-

stitial velocity �eld and have de�ned a local coordinate system and origin. The total

velocity in the x-direction, Vx, is de�ned as

Vx = Vx;o +mx(x� xo); (3.24)

where mx is the velocity gradient across the gridblock and is given by

mx =
Vx;�x � Vx;o

�x
: (3.25)

Knowing that Vx = dx=dt Eq. 3.24 can be integrated to yield the time required to

reach an x exit face, �te;x as,

�te;x =
1

mx
ln

(
Vx;o +mx(xe � xo)

Vx;o +mx(xi � xo)

)
; (3.26)

where xi is the inlet position, xe is the exit position, and xo is the location of the

origin { all in the x-coordinate direction. Similarly, the times required to reach the
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exit faces in the y or z directions are given by

�te;y =
1

my

ln

(
Vy;o +my(ye � yo)

Vy;o +my(yi � yo)

)
; (3.27)

and

�te;z =
1

mz
ln

(
Vz;o +mz(ze � zo)

Vz;o +mz(zi � zo)

)
: (3.28)

The correct face which the streamline exits is the face requiring the smallest value

of �te calculated from Eqs. 3.26, 3.27, and 3.28. Knowing the minimum time, �te,

the exact exit location of the streamline is determined by rewriting Eqs. 3.26, 3.27,

and 3.28 as,

xe =
1

mx
(Vx;i expfmx�teg � Vx;o): (3.29)

ye =
1

my

(Vy;i expfmy�teg � Vy;o): (3.30)

ze =
1

mz
(Vz;i expfmz�teg � Vz;o): (3.31)

For the trivial case of a uniform velocity across a gridblock in a given direction,

m=0 and Eq. 3.26, for example, becomes �te;x = (xe � xi)=(Vx;o) while Eq. 3.29

becomes xe = xo +�te;xVx;o.

For the situation where a 
ow divide exists in the x direction within a gridblock

(Fig. 3.2), for example, one must assure that the sign Vx at the inlet location is the

same as the sign of Vx at a potential x exit face. In other words, a streamline will

not cross a 
ow divide within a gridblock. This check also avoids the possibility of

calculating negative logarithms in Eqs. 3.26, 3.27, and 3.28.

3.6 The Time-of-Flight

The time-of-
ight (TOF) is the time required to reach a distance, s, along a streamline

based on the velocity �eld along the streamline. The TOF concept has been used in

the ground water literature for some time as a method for calculating the capture

radii of wells [64]. More recently, King et al. [44] and Datta-Gupta & King [24] have
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Figure 3.2: Gridblock containing a 
ow divide, and associated streamline path.

used the TOF concept for modeling 
ow in oil reservoirs. Mathematically, the time-

of-
ight, � , is de�ned as,

�(s) =
Z s

0

�(�)

jut(�)j
d�: (3.32)

The above integral is evaluated analytically using Eqs. 3.26 - 3.28 such that,

� =
nblocksX
i=1

�te;i; (3.33)

where �te;i is the calculated incremental time-of-
ight through gridblock i.

3.7 Coordinate Transformation Along Streamlines

In a conventional IMPES �nite-di�erence simulator, Eq. 3.13 is solved in its full three-

dimensional form. With the streamline method, Eq. 3.13 is decoupled into multiple

1D equations that are solved along streamlines. Solving multiple 1D equations along

streamlines is much faster and more accurate than solving the full 3D problem, as

will be shown later.
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Streamlines are launched from gridblock faces containing injectors. As the stream-

lines are traced from injectors to producers the time-of-
ight is calculated based on

Eq. 3.33. The � information is used to transform Eq. 3.13 into multiple 1D equations.

Blunt et al. [10] outlined the following coordinate transform by �rst rewriting

Eq. 3.32 as,
@�

@s
=

�

jutj
; (3.34)

which can further be rewritten as,

jutj
@

@s
� ~ut � r = �

@

@�
: (3.35)

Substituting Eq. 3.35 into Eq. 3.13 gives,

@Sj
@t

+
@fj
@�

+
1

�
r � ~Gj =

qsfj;s
�

: (3.36)

Eq. 3.36 is the governing pseudo 1D phase material balance equation transformed

along a streamline coordinate. It is pseudo 1D since the gravity term is typically not

aligned along the direction of a streamline. Chapter 4 will discuss solving Eq. 3.36

analytically and Chapters 5 and 6 will discuss solving Eq. 3.36 by a numerical method.

3.8 Tracing Streamlines in a 3D Multiwell Domain

Streamlines are traced from an arbitrary number of injection blocks to production

blocks using the equations de�ned in Section 3.5. The streamline paths do not start

at the center of an injection block since the velocity �eld cannot be approximated as

piecewise linear within a gridblock containing a point source. Rather, streamlines are

launched from each gridblock face containing an injector.

The number of streamlines to launch from an injection face can either be a constant

for all faces, or can vary from face to face. The latter method is used within 3DSL.

Streamlines are launched in proportion to the 
ux out of a face, such that more

streamlines are launched from high 
ow rate injectors, while fewer streamlines are

launched from low 
ow rate injectors. Thus more streamlines are traced through
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high 
ow velocity regions and fewer streamlines are traced through low 
ow velocity

regions.

The 
ux across each injection block face is uniform, consistent with the underlying

velocity �eld. Since the 
ux is uniform, streamlines are distributed on each face in

a uniform manner. One algorithm for a uniform launching pattern of an arbitrary

number of streamlines is to distribute the streamlines uniformly in the horizontal

coordinate direction and randomly in the vertical coordinate direction. This launching

pattern allows for the intersection of a maximum number of gridblocks for a �xed

number of streamlines. The 
ux assigned to each streamline qsl is simply,

qsl =
qface
nslface

(3.37)

where qface is the 
ux out of a given face, and nslface is the number of streamlines

launched from the face.

Not every gridblock in the domain will contain a streamline for a �xed total

number of streamlines launched. A missed gridblock is assigned a streamline which

is then traced backwards in the velocity �eld towards an injector. The exact method

of assigning missed gridblocks a 
uid property depends on whether analytical or

numerical solutions are being mapped to the streamlines. See Section 4.4 or Section

5.3 for detailed discussions on calculating missed gridblock properties.

The di�erence between this streamline tracing method and that proposed by

Hewett & Yamada [36] is the location from which streamlines are launched. Hewett

& Yamada propose launching streamlines from a closed surface some distance from

an injector, then tracing each streamline back to the injector, and forward to a pro-

ducer. The main reason for this latter approach was to improve on the estimate of

each streamline's 
ux. However, computational experiments indicate that assigning

a 
ux in this manner is no more accurate than assigning streamline 
uxes based on

Eq. 3.37, which is consistent with the fact that both method calculate 
ux using the

same underlying velocity �eld.
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3.9 Relation Between Streamlines and Streamtubes

However, the numerical streamline method converges as the maximum front move-

ment is reduced to the limiting case of a single gridblock per time step between

pressure solutions.

Tracing streamlines is equivalent to tracing streamtubes if one considers the rela-

tionship between a streamtube and the central streamline within a streamtube.

The volume of a streamtube Vst(s) up to location s along its central streamline is

given by,

Vst(s) =
Z s

0

�(�)A(�)d�; (3.38)

where � is a coordinate de�ned along the central streamline, �(�) is porosity, and

A(�) is the cross-sectional area of the streamtube. By de�nition, the 
ux along a

streamtube is a constant qst = u(�)A(�). Based on a constant 
ux, and using the

time-of-
ight information (Eq. 3.32), Eq. 3.38 becomes [36],

Vst(s) =
Z s

0

�(�)A(�)d� =
Z s

0

qst
�(�)

u(�)
d� = qst�(s): (3.39)

Thus, the volumetric information of a streamtube is re
ected in the time-of-
ight

information of the associated streamline. The value qst is equivalent to the 
ux

assigned to each streamline as de�ned in the previous section (Eq. 3.37).

The advantage of using streamlines as opposed to streamtubes, is that they can be

easily de�ned in 3D and � is simple to evaluate compared with the integral in Eq. 3.38.

One does not need to keep track of the complex geometry of a 3D streamtube. The

disadvantage of using streamlines is that it is di�cult to determine the boundaries of

the streamtube associated with Vst(s). Fortunately, as will be shown in Chapter 4, the

calculation of gridblock properties is independent of knowing the explicit streamtube

boundaries within a gridblock.

3.10 Chapter Summary

This chapter outlined the requirements to trace streamlines in a 3D multiwell domain.

The governing mathematical equations for the IMPES method were presented with
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the solution to the pressure equation following standard �nite-di�erence methods.

Based on a known pressure solution, velocities and hence streamlines could be de�ned.

A key point was that the streamline paths are traced by an analytical method which

assumes that the velocity �eld is piecewise linear within a gridblock. Although not

discussed here, tracing a streamline path is not restricted to a regular Cartesian

system. In fact, all that is required to trace streamlines is a velocity vector �eld.

Finally, rather than solving the full 3D saturation equation, it was transformed into

a series of pseudo-1D equations along streamline paths. The coordinate of interest in

the transformed system is the local time-of-
ight along each streamline rather than

a physical space coordinate.



Chapter 4

Mapping 1D Analytical Solutions

4.1 Introduction

In the previous chapter, the method for de�ning streamline paths based on knowledge

of the total velocity �eld was outlined. The governing 3D saturation equation was

transformed into a pseudo-1D equation along a streamline. This chapter considers

analytical solutions to the pseudo-1D equation (Eq. 3.36). First, the multiphase

gravity termGj is ignored by assuming that phase densities within any given gridblock

are identical (or assuming ~g=0). This assumption results in,

@Sj
@t

+
@fj
@�

= 0; (4.1)

which is a 1D hyperbolic equation. Any displacement that can be modeled by Eq. 4.1

can be mapped onto the 1D streamlines. In this chapter, tracer, water
ood, and

�rst-contact miscible displacements will be studied. Each displacement type does,

however, di�er in its fractional 
ow function fj and the nonlinearity of the problem

(coupling between pressure �eld and saturation �eld through the phase mobilities).1

1Some results in this chapter are published in Thiele et al. [69] and Batycky et al. [7].

29
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4.2 Mapping an Analytical Solution to a Stream-

line

The reference coordinate along a streamline is the time-of-
ight, � . To map an

analytical solution onto a streamline, the proper scaling to the � coordinate is re-

quired. Higgins & Leighton [39] mapped analytical solutions which scaled by xD=tD

to streamtubes. This is straight forward since streamtubes contain a �nite volume.

The dimensionless distance (xD) and dimensionless time (tD) can be calculated along

the streamtube using,

xD =
Z s

0

�(�)A(�)d�
�Vp

; (4.2)

and,

tD =
Z t

0

qdt
�Vp
: (4.3)

�Vp is an arbitrary volume used for scaling streamtubes relative to each other. �Vp is

constant for all streamtubes and is typically de�ned as the average streamtube volume

in a model [68].

As was discussed in Section 3.9, streamlines and streamtubes can be related to

each other through the time-of-
ight. The value of xD=tD for a streamline can be

derived by starting with Eq. 4.2 and Eq. 4.3. Assuming a constant 
ow rate, q, along

the streamtube one gets,

xD
tD

=

R s
0 A(�)�(�)d�

qt
=

1

t

Z s

0

A(�)�(�)d�

v(�)A(�)�(�)
=

1

t

Z s

0

d�

v(�)
=
�(s)

t
: (4.4)

The above equation indicates that any analytical solution that is a function of xD=tD

can be correctly positioned along a streamline by knowing the value of �=t. Since

properties like saturation, fractional 
ow, and total mobility are a unique function of

xD=tD, they are also a unique function of �=t. Thus, only the time-of-
ight along a

streamline needs to be de�ned to determine 
uid properties along the streamline.

Both xD=tD and �=t are dimensionless velocities. The �=t value and its relation-

ship to dimensionless velocity is illustrated in Fig. 4.1 where a Buckley-Leverett pro�le

is mapped along a streamline. For example, Eq. 4.4 states that if the time-of-
ight to

a given point on a streamline is �=100 days, but the simulation time is t=200 days,
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Figure 4.1: Example of mapping a Buckley-Leverett pro�le along a streamline based
on the time-of-
ight coordinate.

then the dimensionless velocity of the saturation located at � =100 days must be

vD=0.5. Given the correct dimensionless velocity, the corresponding saturation with

vD=0.5 can be mapped onto the streamline at the desired location.

4.3 Calculation of Gridblock Properties

To assign gridblock properties, one could trace back from the center of every gridblock

in the domain to an injector. The time-of-
ight to the gridblock is then known and

Eq. 4.4 could be used to calculate gridblock properties. A more e�cient method is

to simply trace streamlines from injectors to producers, as described in Section 3.8.

The majority of gridblocks will now contain multiple streamlines.

Rather than using the relation in Eq. 4.4 to assign gridblock properties, a unique
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property (saturation, mobility, or time-of-
ight) must be calculated based on the mul-

tiple streamlines that pass through it. For example, the average gridblock saturation,

�Sgb, is de�ned as

�Sgb =

nsl
gbX

i=1

!i �S
sl
i ; (4.5)

where �Ssl
i is the average saturation for the ith streamline and !i is a weighting factor

for the ith streamline (
Pnsl

gb

i=1 !i = 1).

The average saturation along a single streamline in a gridblock for a given time t

can be de�ned as,

�Ssl
i =

1

��

Z �exit

�in
Si(�=t)d�: (4.6)

For simplicity �Ssl
i is approximated as,

�Ssl
i � Ssl

i (��=t); (4.7)

where

�� =
�inlet + �exit

2
: (4.8)

Strictly speaking, the weighting factor in Eq. 4.5 for each streamline should be

the volume fraction of the associated streamtube within the gridblock. Similar to

Eq. 3.39, the volume of the ith streamline within a gridblock is given by,

V i
sl =

Z �exit

�in
�(�)A(�)d� =

Z �exit

�in
q(�)�(�)d�: (4.9)

The weighting factor based on a streamtube volume fraction is given by,

!i =

R �exit
�in

q(�)�(�)d�jiPnsl
gb

j=1

R �exit
�in

q(�)�(�)d�jj

: (4.10)

As was discussed in Section 3.9, the disadvantage of using streamlines is that the

associated streamtube volume within the gridblock is unknown and the integrals in

Eq. 4.10 cannot be evaluated. For purposes of calculating the weighting factor only,

it is assumed that the 
ux is independent of � and the 
ux is the same for each

streamline within a gridblock. The validity of this assumption will be veri�ed in

Section 4.14. With this assumption the weighting factor reduces to,

!i =
��iPnsl
gb

i=1��i

: (4.11)
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Thus, each streamline is weighted by its time-of-
ight \length" in a gridblock, rela-

tive to all of the time-of-
ight \lengths" in a gridblock.2 Although some assumptions

were required to arrive at the �nal form for !i, Section 4.14 illustrates that displace-

ment results are insensitive to the manner in which !i is calculated. This is because

gridblock properties are ultimately a function of the time-of-
ight to a gridblock, the

value of which can be calculated independent of any weighting factor.

Finally, based on Eq. 4.5 and Eq. 4.11, the average saturation for a gridblock is

calculated as,

�Sgb =

Pnsl
gb

i=1��i �S(��)iPnsl
gb

i=1��i

; (4.12)

similarity the average total mobility within a gridblock is,

��tgb =

Pnsl
gb

i=1��i ��t(�� )iPnsl
gb

i=1��i

; (4.13)

and the average time-of-
ight of a gridblock is,

��gb =

Pnsl
gb

i=1��i��iPnsl
gb

i=1��i

: (4.14)

Because 3DSL is designed to solve very large models, the !i's are not stored for each

gridblock for a given time step. Rather, the summations in Eq. 4.12, Eq. 4.13, and

Eq. 4.14 are updated as streamlines are traced.

For the unique case of tracer 
ow and constant boundary conditions, the stream-

lines do not change with time. Although less accurate, Eq. 4.12 can be approximated

as �Sgb = S(��gb) to avoid retracing streamlines (a numerically expensive process).

4.4 Missed Gridblocks

For the majority of simulation cases, not every gridblock will contain a streamline.

For these missed gridblocks a time-of-
ight must still be calculated in order to de�ne

2Section 6.3 illustrates that when modeling gravity e�ects, circulation streamlines can occur.
However, it is unclear what 
ux to assign to these streamlines. Since Eq. 4.11 ignores streamline

uxes it can be applied directly to gravity problems without any modi�cations.
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a gridblock 
uid property. To assign a TOF to a missed gridblock, one simply traces

a streamline backwards to the nearest gridblock containing an average TOF. The

missed gridblock TOF is then calculated as

�missed = ��blk +��backwards: (4.15)

By knowing �missed, the gridblock 
uid properties can then be calculated using Eqs.

4.12, 4.13, and 4.14. To eliminate a compounding error in �missed being calculated

based on another missed gridblock's TOF, one simply traces back to the �rst gridblock

containing a streamline originating from a source.

4.5 Calculation of Producer Fractional Flows

The 
ux assigned to each streamline is used to determine producer fractional 
ows.

A producer fractional 
ow is given by,

fp =

Pnarrive
i=1 qsli f

sl
iPnarrive

i=1 qsli
(4.16)

where f sli represents the fractional 
ow of the ith streamline arriving at the producer.

The denominator in Eq. 4.16 represents the producer total 
uid 
ux, qsls , determined

from the arriving streamlines. For each producer, the value of this total 
ux can be

compared against the true value of qs derived from the pressure solution. For all cases

presented in this thesis, the error between qsls and qs for each producer was less than

1%.

4.6 Validity of Recalculating Streamline Paths

The key idea in the streamline mapping technique presented here is the method by

which saturations are moved forward in time. As discussed earlier, one option is to

�x the streamline paths (�xed streamtubes) for all time. The changing mobility �eld

is accounted for by updating the resistances along streamtubes. The advantage of

a �xed path method is that the pressure �eld is only calculated once, resulting in a
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fast calculation. However, a disadvantage is that highly nonlinear displacements are

incorrectly modeled leading to large errors is performance predictions [68].

A nonlinear displacement is characterized by a changing velocity �eld as the dis-

placement proceeds. The level of nonlinearity is directly related to the distance over

which the total 
uid mobility changes. For water
oods, the mobility change occurs

over a long rarefaction wave, while for FCM displacements the mobility change occurs

over a very short distance near the displacement front. As will be shown later, for

heterogeneity dominated displacements, water
oods are only weakly nonlinear while

FCM displacements can be highly nonlinear.

To properly capture a displacement's nonlinearity, the alternative to �xed stream-

line paths is to allow the streamlines to change as the mobility �eld changes. This

method has been used successfully by Thiele et al. [70, 71] to model adverse mobility

FCM and compositional 
oods. The method is appealing since streamline paths and

TOF's along the streamlines honor the changing mobility �eld. The major disadvan-

tage with this method occurs when a streamline path moves from a position at time

tn to a new position at time tn+1. Consequently, the saturation pro�le along the new

streamline will in general be nonuniform. This nonuniform condition represents the

initial condition to be moved forward along the streamline at the new time step.3

However, 1D analytical solutions only exist for uniform initial conditions. The major

assumption when mapping analytical solutions to streamlines then, is to ignore the

new conditions present along recalculated streamline paths and simply map a new

1D solution scaled to the new time. The validity of the assumption is based on how

much the streamline paths change position from time tn to tn+1.

Streamline paths are governed by the velocity �eld which, in turn, is calculated

from solving the pressure equation (Eq. 3.7). If boundary conditions are constant,

changes in the total mobility �eld ultimately determine the change in streamline

paths. For unit mobility ratio displacements the streamline paths do not change, and

the mapping method is exact with no assumptions. In addition, the total mobility �eld

will change little through time for nonlinear displacements if the system is dominated

by correlated heterogeneity. As a result, the uniform initial condition assumption can

3Chapter 5 discusses how to move these conditions forward correctly by a numerical technique.



36 CHAPTER 4. MAPPING 1D ANALYTICAL SOLUTIONS

also be applied to this latter case. Thiele [68] includes a thorough discussion on the

validity of this method, concluding that the technique is applicable to heterogeneity

dominated displacements, as will be shown here.

4.7 Calculation of True Time

Each time that the streamline positions are recalculated, a problem of not knowing

what the true time, T n+1, is for a displacement at the end of time step n + 1 is

introduced. This problem occurs because grid saturation information is not explicitly

moved forward in time, but instead is removed and a new 1D solution scaled to t+�t

is mapped along the new streamline positions. The old saturation information is only

accounted for in the mobility terms of the pressure equation.

To determine the true time, historical information is accounted for by a volume

balance on the injected phase (for example water) at the end of mapping all stream-

lines. This leads to an expression for the true time step size over the n + 1 time

interval as,

�T n+1 =
(Winit �W n+1

r +W n
I �W n

P )

Qn+1( �fn+1 � 1)
; (4.17)

where the average �eld production fractional 
ow is de�ned as �fn+1 = (fn+ fn+1)=2,

the average of the �eld production fractional 
ows at n and n + 1, and Qn+1 is the

total injection rate during the n + 1 time step. Winit is the initial volume of water

in the reservoir, and W n+1
r is the volume of water present after mapping all the new

streamlines at the n+ 1 time step. Cumulative water production up to the previous

time step is calculated by,

W n
P =

nX
i=1

Qi �f i�T i; (4.18)

and since all injectors inject 100% water, cumulative water injection volume is simply

given by,

W n
I =

nX
i=1

Qi�T i (4.19)

Thus, t can be considered an internal time which is required for the mapping of

the 1D solution to streamlines. T is the true time that is external and of interest.
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The true time is calculated at the end of each mapping step by applying Eq. 4.17

and then updating T by T n+1 = T n +�T n+1. Again, T is introduced because of the

mapping method used here. For the tracer case, where streamlines do not change

with time, T = t throughout a simulation.

4.8 Time Stepping

An underlying idea of the streamline method is that the streamline paths are allowed

to change with time to honor the changing mobility �eld. To update the pressure

�eld and move saturations forward in time from tn to tn+1 = tn+�tn+1p the following

algorithm is used,

1. Calculate the pressure �eld by solving Eq. 3.7 as outlined in Chapter 3. Recall

that the streamline approach uses an IMPES method so the saturation �eld for

use in Eq. 3.7 is at tn while the well boundary conditions are at tn+1.

2. Apply Darcy's law to determine the total velocity �eld at gridblock faces.

3. Trace streamlines using Eqs. 3.26 - 3.31. While tracing a streamline, use Eq. 4.4

with t now equal to tn+1, map the 1D analytical solution along each streamline.

4. After tracing all streamlines and checking for missed gridblocks, use Eqs. 4.12

and 4.13 to determine the average saturation and total mobility of each grid-

block.

5. Calculate the true time, T , that the new saturation distribution exists at.

6. Return to Step 1.

Because solutions being mapped to streamlines can scale to any time, the time

stepping technique is always stable no matter the size of the time step. Instead of a

Courant-Friedrichs-Lewy (CFL) condition for stability, the issue becomes, how many

time steps over a �xed total time are required to capture accurately the nonlinearity

of the displacement (a converged solution)? A solution is considered converged when
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there is no additional change in recovery with increased number of pressure steps over

a �xed simulation time. See Section 4.13 for a discussion on convergence using the

streamline method when mapping analytical solutions.

4.9 Tracer Flow

Tracer 
ow is characterized by identical 
uid properties between initial and injection

phases. For tracer 
ow with constant well conditions the streamlines are �xed for all

time. No approximations are made in time stepping and there are no convergence

issues (nonlinearities are not present in the pressure solution). Additionally, the ana-

lytical tracing of streamline paths coupled with the mapping of a 1D analytical tracer

pro�le will yield exact results. Numerical di�usion caused by averaging streamline

properties within a gridblock remains con�ned to the gridblocks scale. When mapping

analytical solutions, 
uid saturations are not explicitly moved forward at each time

step. Thus, the level of numerical di�usion does no grow as a displacement proceeds.

For tracer 
ow, the fractional 
ow function, f , is equivalent to the tracer concen-

tration, C, and Eq. 4.1 becomes,

@C

@t
+
@C

@�
= 0; (4.20)

subject to the following initial and boundary conditions,

C(�; 0) = Cinitial � � 0

C(0; t) = Cinjection t > 0: (4.21)

The solution to the above equation gives the standard tracer pro�le shown in Fig. 4.2

where Cinitial=0 and Cinjection=1. This pro�le contains no di�usion, however Thiele

[68] presents streamtube solutions to tracer 
ow that do include longitudinal di�usion

in the 1D tracer pro�le.

4.9.1 Quarter 5-Spot Tracer Case

To validate the streamline method outlined up to this point, tracer 
ow in a

homogeneous quarter �ve-spot pattern is studied. Shown in Fig. 4.3 is a recovery
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Figure 4.2: Tracer concentration pro�le versus dimensionless velocity.

comparison between the streamline simulator (3DSL) on a 100X100 grid and the an-

alytical solution [56]. Similar results using streamlines were presented by Fay & Pratts

[29] and more recently by Datta-Gupta & King [24]. Clearly the 3DSL results match

exactly to the analytical solution. Also included in Fig. 4.3 are the results from the

commercial �nite-di�erence simulator, ECLIPSE [41], for a grid aligned parallel to the

main 
ow direction and a grid aligned diagonal to the main 
ow direction. ECLIPSE

shows both numerical di�usion, as illustrated by the early breakthrough times, and

grid orientation e�ects, as illustrated by two di�erent breakthrough pro�les. Fig-

ure 4.4 is a comparison of the saturation pro�les between the streamline method and

ECLIPSE, at tD=0.72, the moment of tracer breakthrough predicted by the analyti-

cal solution. Clearly, ECLIPSE does not capture the sharp tracer displacement front

that 3DSL predicts. Also, note in Fig. 4.4 that the streamline method does show

some mixing of the tracer at the leading front over the range of a single gridblock. A

single gridblock represents the minimum resolution to which saturation information

is known. Within these gridblocks, some streamlines carry a concentration of 1 while

others carry a concentration of 0. The result is a mixed value. However, when map-

ping analytical solutions, these mixed compositions are not moved forward in time.

Instead, a new 1D solution scaled to the new time is mapped along each streamline.

Thus, the level of numerical di�usion never increases with this approach. In Chapter

5, the mixed grid compositions are moved forward at each time step and numerical
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Figure 4.3: Comparison of tracer concentration at the producer in a quarter �ve-spot
for three di�erent methods.

 

 

3DSL - Analytical

 

 

ECLIPSE - Fully Implicit

Figure 4.4: Comparison of tracer concentration distributions between two numerical
method in a quarter �ve-spot pattern at tD=0.72 - 100�100 homogeneous grid.
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di�usion does grow with time as the number of convective mapping steps increase.

4.9.2 Sensitivity to Number of Streamlines

The results from the streamline method are dependent on the number of stream-

lines that are traced in a model. The greater number of streamlines that are launched

in a model, the fewer number of gridblocks that are missed with the streamlines. For

highly heterogeneous 
ows an in�nite number of streamlines may be needed to trace

from injectors in order to intersect all gridblocks. However, recall that any missed

gridblock is assigned a saturation based on tracing streamlines backwards in the ve-

locity �eld from a missed gridblock to one containing multiple streamlines (Section

4.4). As a result, launching an in�nite number of streamlines is unnecessary. The

number of streamlines launched does not e�ect the calculation of gridblock phase

saturations, as shown in Fig. 4.5. However, the number of streamlines traced from

injector to producer does e�ect the resolution of the injected phase concentration at

the producer. This is because the 
uid cut at a producer is calculated based on the

phase 
ux of arriving streamlines, as discussed in Section 4.5.

4.9.3 Advantages of Moving Fluid Along Streamlines

With the streamline method, 
uids are moved along streamline paths. In a conven-

tional �nite-di�erence scheme, because of the simplicity of discretizing the governing

equations on a �nite grid, 
uids are moved between the discrete gridblocks. This

section highlights the di�erences between the two approaches. Tracer 
ow is consid-

ered here since the velocity �eld is �xed for all time. Furthermore, since the pressure

solution method is identical for both methods, the velocity �eld at the gridblock faces

is also identical for both methods. Tracer 
ow highlights di�erences strictly due to

the methods by which 
uids are transported convectively in each case.

As a numerical experiment, consider a tracer slug injected into the permeability

�eld shown in Fig. 4.6. The tracer pro�le mapped along the streamlines is shown

in Fig. 4.7. The well pattern is a quarter �ve-spot with an on-trend orientation.

The slug is injected from tD=0 to tD=0.013. Figure 4.8 compares the tracer pro�le
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Figure 4.5: E�ect of number of streamlines launched on tracer concentration distribu-
tion, resolution in tracer e�uent pro�le, and tracer recovery calculations in a quarter
�ve-spot pattern.
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Figure 4.7: Tracer slug pro�le mapped along streamlines in Fig. 4.8.
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between the streamline method and ECLIPSE - IMPES at the end of slug injection

and at tD=0.07. Two key points illustrated by Fig. 4.8 are that; 1) the streamline

method correctly maintains the sharp tracer pro�le at the front and back of the slug,

whereas ECLIPSE cannot and, 2) the center of mass Cm position of the tracer slug

is completely di�erent between the two methods.

There are two sources of numerical error within ECLIPSE that lead to di�usion

of the tracer. The �rst source is truncation error due to approximations in the time

and space derivatives. This error has been quanti�ed in one-dimensional situations

(Lantz [50]). The second source of error is due to approximations in the path of the

tracer. Shown in Fig. 4.9 is a conceptual picture of a predicted particle position at

time t2 for the streamline method and a conventional method. As the time step size

is reduced in the conventional method, the particle path will approximate the true

streamline path. However, even with an in�nite number of time steps, the two paths

will never be identical and will result in di�erences in bulk tracer movement (di�erent

centers of mass).

The streamline method is clearly more accurate, but it is also worth pointing

out the di�erence in CPU times between the two methods. For the case shown

in Fig. 4.7, ECLIPSE - IMPES required 700 seconds while the streamline method

required 2 seconds (mostly I/O). Thus, another obvious advantage of moving 
uids

along streamlines is the signi�cant time savings. The reason for the large speed-up

factor is that very large time steps can be taken in the streamline method, since the

underlying grid stability constraints are e�ectively decoupled from 
uid movement.

A 
uid element can be moved from t1 to t2 in a single time step with the streamline

method, whereas a conventional method will require many time steps to reach t2.

This idea is discussed further in Chapter 5.

Recall that for tracer 
ow, the velocity �eld calculated by each method was iden-

tical for all time. However, it is also worth considering a nonunit mobility ratio

displacement in the context of the above discussion. Numerical di�usion will not

only a�ect the position and concentration of an injected 
uid but also incorrectly

alter the velocity �eld. This alteration introduces compounding errors in predicting
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Figure 4.8: Comparison of tracer slug pro�le predictions between the streamline
method and ECLIPSE (Cm - center of mass).
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Figure 4.9: Conceptual picture illustrating the predicted particle position at time t2
using the streamline method and a �nite di�erence method.
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uid movement and helps to explain why �rst-contact miscible and compositional dis-

placements are sensitive to the accuracy of numerical method used in a conventional

simulator.

4.9.4 Quantifying Numerical Di�usion in Conventional Meth-

ods

For tracer displacements with �xed boundary conditions, the streamline method cou-

pled with mapping the analytical tracer pro�le produces di�usion free results. Because

of the ability to predict exact results, the streamline method can be used to quantify

the level of numerical di�usion present in a conventional simulator.

Consider a tracer displacement in a two-dimensional 100�100 permeability �eld

(Fig. 4.6). The permeability �eld has an anisotropy ratio of 8:1. An injector-producer

pair is considered with two well arrangements in relation to the permeability orien-

tation, on-trend arrangement and o�-trend arrangement. Both 3DSL and ECLIPSE

were run to tD=2.0 for each well orientation, with the resulting saturation pro�les at

breakthrough shown in Fig. 4.10 and the recovery pro�les shown in Fig. 4.11.

A comparison of saturation pro�les indicates that there is numerical di�usion

within ECLIPSE for both models. However, the di�usion has a greater e�ect on

predicted recovery for the on-trend well model than for the o�-trend well model. To

explain the di�erences in recovery matches, one must consider di�usion as a secondary

recovery mechanism. Within ECLIPSE, there is both longitudinal and transverse

di�usion, while the streamline method contains neither. Transverse di�usion will

tend to enhance recovery, while longitudinal di�usion will reduce recovery. Thus,

for the on-trend model where 
ow is primarily longitudinal, transverse di�usion is

signi�cant enough to result in improved recovery. However, for the o�-trend model

where 
ow paths are highly tortuous between the injector and producer (Fig. 4.10),

the magnitude of transverse convective 
ow is greater than any transverse di�usion

that may be present; thus no improvement in recovery.

The important conclusion from this numerical experiment is that the level of

numerical di�usion and its impact on recovery is directly related to the heterogeneity
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Figure 4.10: Comparison of tracer distributions for on-trend and o�-trend models,
between 3DSL and ECLIPSE.

distribution and 
ow orientation. For water
ooding, di�usion e�ects on recovery will

be minor. However, in �rst-contact miscible displacements, numerical di�usion can

be large. Di�usion can incorrectly alter the underlying mobility �eld and hence have

a large impact on displacement predictions. This will be shown in Section 4.12.2.

4.9.5 Particle Tracking to Model Tracer Flow

Clearly, the streamline method is well suited to modeling tracer displacements. The

computation time is signi�cantly reduced and numerical di�usion is eliminated. In

order to avoid numerical di�usion, particle tracking has been used to model 
ow of

pollutants in water (tracer 
ow) in the ground water industry. See Kinzelbach [45],

U�nk [76], Tompson & Gelhar [74] or Tompson et al. [75] for a detailed discussion
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Figure 4.11: Comparison of recovery pro�les for on-trend and o�-trend models, be-
tween 3DSL and ECLIPSE.

of contaminant modeling using particle tracking. In both the streamline method and

particle tracking, transport occurs along streamlines. Particle tracking does elimi-

nates numerical di�usion and grid orientation e�ects. However, tracking individual

particles can lead to 
uctuations in computed cell concentrations if the number of par-

ticles in a gridblock is small. Furthermore, complex accounting issues occur in order

to track particle positions through time and space. On the other hand, the streamline

method transports concentrations along streamlines which eliminates 
uctuations in

cell concentrations. Additionally, the accounting process is more straight forward

since time stepping only requires knowledge of the previous cell concentrations and

not the previous streamline paths.

4.10 De�nition of Speed-up Factors

The ability to take large time steps with the streamline method translates into short

execution times relative to conventional methods. A key idea to convey is \How much

faster is the streamline method compared to conventional methods, and how is the
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speed-up measured?" For practical purposes, the speed-up factor of interest, and the

convention in this thesis, is based on the actual CPU time required by each simu-

lator. However, given the ine�ciencies in the 3DSL matrix solvers compared to the

ECLIPSE matrix solver, quoted speed-up factors are assumed to be pessimistic. Note

that all CPU results are for a single processor run time on a DEC Alpha workstation

with 256 MB of memory.

Speed-up factors are also sensitive to whether ECLIPSE results are obtained using

a fully-implicit scheme or the IMPES scheme. The IMPES method requires more

time steps but results in less numerical di�usion. Thus, the trade-o� is time versus

accuracy. In this and subsequent chapters, it is made clear which ECLIPSE method

is being used in the speed-up factor calculations.

In addition to actual CPU times, the number of time steps and the number of

matrix solves throughout a displacement are also quoted when comparing simulator

performance. For 3DSL, the number of time steps corresponds to the number of

convective steps taken (number of times 1D solutions are mapped along streamlines),

while the number of times the pressure �eld is recalculated corresponds to the number

of matrix solves. For ECLIPSE, the number of time steps corresponds to the number

of times the nonlinear equation set is solved (the number of times the saturation solu-

tion is moved forward). However, the iterative solver required to invert the nonlinear

equation set is typically called multiple times. Thus, the number of matrix solves for

ECLIPSE re
ects the number of times that the iterative solver is called.

4.11 Immiscible Two-Phase Displacements

Immiscible two-phase displacements can be modeled using the streamline method with

an appropriate two-phase immiscible one-dimensional solution, such as the Buckley-

Leverett solution [16]. The key di�erence between an immiscible two-phase displace-

ment and tracer 
ow is the changing total mobility �eld. Eq. 3.7 is now nonlinear

since �t changes with time. As discussed in Section 4.6, the streamline paths are

recalculated to honor the changing mobility �eld. Although nonuniform saturation

conditions are present along recalculated streamline paths, the conditions are ignored
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and a new 1D solution scaled to the new time is mapped. This is a reasonable as-

sumption for displacements dominated by heterogeneity since streamline positions

change little throughout a displacement.

4.11.1 1D Immiscible Two-Phase Solution

The governing 1D immiscible two-phase solution mapped along streamlines is the

Buckley-Leverett solution. For this solution, Eq. 4.1 becomes

@Sw
@t

+
@fw(Sw)

@�
= 0; (4.22)

with the following initial and boundary conditions,

Sw(�; 0) = Sw;initial � � 0

Sw(0; t) = Sw;injection t > 0: (4.23)

The fractional 
ow function is now given by,

fw(Sw) =
krw(Sw)=�w

krw(Sw)=�w + kro(Sw)=�o
(4.24)

Assuming simple Corey-type [23] relative permeability curves of the form krw = (Sw)
2

and kro = (1� Sw)
2 and a 
uid viscosity ratio of �o=�w = 10, the resulting Buckley-

Leverett pro�les to map along streamlines are shown in Fig. 4.12.

It is worth observing that although the total mobility ratio changes from 0.1 to

1.0, there is a long rarefaction wave over which this change occurs. Thiele [68] noted

that as a result, water
ooding displacements are only weakly nonlinear and require

only a few pressure solves throughout a displacement life to capture this nonlinearity.

4.11.2 3D Five-Spot Displacements

The 1D pro�le shown in Fig. 4.12 is used to model a water
ood displacement in a �ve-

spot pattern initially at 100% oil saturation. The model contains 50,000 gridblocks

(50�50�20), with a producer completed in the upper ten layers in each corner of

the model and a central injector located in the lower ten layers of the model. Three
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Figure 4.12: Buckley-Leverett pro�les for water saturation, water fractional 
ow, and
total mobility as a function of �=t.

Permeability Correlation Length Horiz. Rotation
Field �c;x �c;y �c;z wrt. x-axis

Model 1 0.3 0.03 0.1 45o

Model 2 0.4 0.4 0.1 0o

Model 3 0.4 0.1 0.8 45o

Table 4.1: Correlation length parameters used to build geologic models for results in
Fig. 4.13.

di�erent permeability models with di�erent correlation lengths were constructed using

sequential Gaussian simulation [26]. The model properties are summarized in Table

4.14 and the resulting 3D permeability �elds are shown in Fig. 4.13.

The oil recovery curves for the three permeability models are shown in Fig. 4.14

and compared with ECLIPSE fully implicit solutions. For each case, 5,000 streamlines

were used in 3DSL. A comparison of individual well watercuts for each model is also

shown in Fig. 4.14. The agreement in recoveries for the three di�erent permeability

�elds is excellent. Agreement is also excellent on a per well basis, although numerical

di�usion in ECLIPSE does tend to delay breakthrough at the two o�-trend producers

4For a rotated coordinate systems the longest model distance along the rotated coordinate axis
is used, when calculating �c.
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Figure 4.13: Three permeability models with di�erent permeability correlation struc-
tures (summarized in Table 4.1).
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Figure 4.14: Field oil recovery and individual well watercut responses in a full �ve-
spot pattern for three di�erent permeability models.

for model 1. Table 4.2 summarizes simulator performance for each method on each

model. The speed-up factor, based on CPU time, for the streamline method over

ECLIPSE is between 25{50. The primary reason for these large speed-ups is due

to the fact that ECLIPSE required approximately 25 times more matrix solves than

3DSL.

One could argue that the true timing comparison should be between the streamline

method and ECLIPSE - IMPES since 3DSL is an IMPES simulator. Model 2 results

were also generated using the IMPES method and showed no change in recovery.

However, ECLIPSE run time increased to 2370 minutes, a speed-up factor of 110.



4.12. FIRST-CONTACT MISCIBLE DISPLACEMENTS 55

Model 3DSL ECLIPSE - implicit
CPU Time Pressure CPU Time Matrix Speed-up
(min) Steps Solves (min) Steps Solves Factors

1 20 50 25 1062 206 663 53
2 22 50 25 600 182 340 27
3 20 50 25 959 187 599 48

Table 4.2: Comparison of simulator performance parameters between the streamline
method and ECLIPSE for 3 di�erent water
ood 5-spot models.

Since water
ooding is highly stable and numerical di�usion is minimal, the more

accurate IMPES formulation in ECLIPSE did not alter the recovery predictions for

these problems.

4.12 First-Contact Miscible Displacements

First-contact miscible (FCM) displacements are considerably more di�cult to model

than 2-phase immiscible displacements. The large mobility contrast between the

solvent and the oil makes the problem highly nonlinear, while instabilities in the dis-

placement front lead to substantial numerical di�usion in conventional methods. This

numerical di�usion can, in turn, incorrectly alter the mobility �eld and ultimately

the displacement behavior. Because of the limitations in conventional methods, other

numerical schemes have been proposed for modeling FCM displacements. Arak-

tingi & Orr [1] [2] used particle tracking to model 
ow in two-dimensional heteroge-

neous cross-sections. Tchelepi & Orr [67] developed a hybrid particle tracking/�nite-

di�erence method for three-dimensional systems. Christie & Bond [18] developed a

high order numerical method that used a 
ux correcting transport (FCT) algorithm

for modeling FCM displacements. All methods used non-conventional techniques to

improve the calculation of inter-gridblock component 
uxes.

The streamline method can also be used to model FCM displacements, however

mapping 1D analytical solutions along streamlines does restrict application. Recall
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that the method requires 
ow to be dominated by heterogeneity. Furthermore, there

is no interaction between streamlines neighboring in space or between the calculated

composition distributions in time, implying that explicit viscous �ngering cannot be

modeled.

4.12.1 1D First-Contact Miscible Solution

Thiele [68] presents a detailed discussion on the appropriate 1D solution to map along

streamlines, based on the scale at which a FCM displacement occurs. Because of the

assumptions inherent in mapping analytical solutions along streamlines, the primary

interest is �eld scale displacements. As such, the Todd & Longsta� [73] solution

along each streamline will be used, which assumes that viscous �ngering occurs at a

sub-streamtube scale.

Todd & Longsta� [73] noted that accurate predictions of �eld scale FCM displace-

ments could be made by accounting for viscous �ngering in an averaged 1D sense

even though the detailed �ngering phenomena is a 2D or 3D process. The averaged

1D results show linear scaling of concentrations with distance. The Todd & Longsta�

model includes this linear scaling feature and also includes a mixing parameter (!) to

account for the level of �ngering between solvent and oil at the gridblock scale. For

FCM displacements Eq. 4.1 can be rewritten as,

@Cs

@t
+
@f(Cs)

@�
= 0; (4.25)

with the following initial and boundary conditions,

Cs(�; 0) = Cs;initial � � 0

Cs(0; t) = Cs;injection t > 0: (4.26)

The fractional 
ow, f , of solvent concentration, Cs, predicted in the Todd & Longsta�

model is given by,

f(Cs) =
Cs

Cs +
1�Cs

M1�!

; (4.27)

where the mobility ratio is simply the viscosity ratio between oil and solvent, M =

�o=�s. Due to mixing of the solvent and oil, the e�ective phase mobilities are given
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by,

�oe = �1�!o �!m �se = �1�!s �!m; (4.28)

where the e�ective mixture viscosity �m is de�ned by a quarter power mixing rule,

�m = (
Cs

�
1=4
s

+
1� Cs

�
1=4
o

)�4: (4.29)

Equation 4.28 is used in calculating the total mobility (�t) related to a speci�c solvent

concentration. By setting !=1 (complete mixing at the gridblock scale) the result is a

highly unstable piston-like displacement whereas !=0 (no mixing) gives the equivalent

two-phase displacement with straight-line relative permeabilities.

Thiele [68] studied the e�ect of the mixing parameter on displacement results in

comparison with high-order numerical results. Although only one permeability �eld

was used, he concluded that ! closer to 1 yielded recoveries similar to the numerical

results. A special case of the Todd & Longsta� model is Koval's [47] model which

assumes the mixing parameter is a unique function of mobility ratio only,

! = 1� 4
ln(0:78 + 0:22M1=4)

lnM
: (4.30)

Thiele [68] found that Koval's model mapped along streamlines gave acceptable results

when compared with high resolution �nite-di�erence simulations.

Shown is Fig. 4.15 is a 1D FCM pro�le using Koval's model forM=10 (!=0.725).

Again, the total mobility varies from 0.1 to 1.0 as in the water
ood example, but

now the change in mobility (the nonlinearity) occurs over a much shorter dimension-

less velocity range. This can be interpreted, all else being equal, as the streamline

method requiring a greater number of pressure solves for FCM displacements than

for water
ood displacements, to capture the nonlinearity accurately.

4.12.2 2D Displacement With Di�erent Numerical Methods

Before studying FCM results from the streamline method, one question to ask is,

\What is the correct solution to compare against?" As discussed earlier, conven-

tional methods have di�culty modeling FCM displacements. The BP FCT code [19]

is designed speci�cally for miscible displacements in 2D cross-sectional models and
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Figure 4.15: FCM Koval model pro�les for gas saturation, gas fractional 
ow, and
total mobility as a function of �=t.

provides a reference to compare against. However, for 3D multiwell problems the

only alternative is to compare with ECLIPSE. The purpose of this section is to de-

termine if ECLIPSE can accurately model 2D FCM displacements before examining

3D displacements.

Thiele [68] presents FCM results from the BP FCT code for a mildly heterogeneous

125�50 permeability �eld that will represent the reference solution. For comparison

purposes, the following methods are considered; (1) the streamline method with Ko-

val's solution, (2) ECLIPSE fully implicit single point upstream (SPU) weighting

scheme, and (3) ECLIPSE fully implicit two-point upstream weighting scheme. The

two-point upstream weighting technique provides a better estimate of interblock 
uxes

than the SPU scheme and thus a more accurate answer containing less numerical er-

ror.

Shown in Fig. 4.16 is a comparison of oil recovery predicted by the four methods.

Saturation pro�les of the solvent at tD=0.3 for each method are shown in Fig. 4.17.

The presence of numerical di�usion in the SPU scheme can be clearly seen in Fig. 4.17

in comparison with the two-point scheme and the BP FCT scheme. The increased

level of di�usion improves transverse sweep and results in an overly optimistic re-

covery, compared with the other methods. Figure 4.16 highlights that by using the
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Figure 4.16: Oil recovery for a 2D FCM displacement by 4 numerical methods.

two-point upstream scheme in ECLIPSE, the method can give accurate recovery pre-

dictions. It is worth noting for this size problem the two-point upstream scheme was

about 5 times slower than the SPU scheme.

4.12.3 3D First-Contact Miscible Displacements

The three 50�50�20 permeability �elds (Fig. 4.13) used in modeling water
ood dis-

placements are used here for modeling FCM displacements. The well con�guration

is a 5-spot arrangement with a central injector in the lower 10 gridblocks, and a pro-

ducer in the upper 10 gridblock of each corner. The 
uid mobility ratio isM=10 and

Koval's model was used for the streamline results. Fully implicit ECLIPSE results

were also generated for each permeability �eld using the two-point upstream weight-

ing method. A summary of recovery curves and individual producer GOR's for each

model is shown in Fig. 4.18.

Field recoveries match well for model 3 but less so for models 1 and 2. The dif-

ference in matches is due to di�erent levels of numerical di�usion in each model. As
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Figure 4.17: Solvent pro�le in a 125�50 heterogeneous FCM displacement, for four
di�erent numerical methods at tD=0.3.
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Model 3DSL ECLIPSE - implicit
CPU Time Pressure CPU Time Matrix Speed-up
(min) Steps Solves (min) Steps Solves Factors

1 34 50 50 3980 326 1327 117
2 37 50 50 2361 336 860 64
3 33 50 50 4370 362 1085 132

Table 4.3: Comparison of simulator performance parameters between the streamline
method and ECLIPSE for 3 di�erent FCM 5-spot models.

was shown in Section 4.9.4, di�erent reservoir heterogeneity characteristics can re-

sult in di�erent levels of numerical di�usion. These di�usion e�ects are ampli�ed in

FCM displacements. For model 1, numerical di�usion in ECLIPSE results in delay-

ing breakthrough to the o�-trend producers which in turn leads to higher recovery

predictions over the streamline method. Finally, note in models 1 & 2 that the indi-

vidual well GOR pro�les predicted by both methods, although not matching, show

similar characteristics. The ECLIPSE results appear to be shifted in time relative to

the streamline results.

The simulator run time performance results are summarized in Table 4.3. For

these 50,000 gridblock models, the streamline method was about 100 times faster

than ECLIPSE. As Fig. 4.18 shows, the streamline results also have less numerical

di�usion. It is worth noting that the level of numerical di�usion in ECLIPSE could

be reduced by using the IMPES method. However, due to the increase in time steps

required, the speed-up factor would be three orders of magnitude [70], implying many

days per simulation.

4.13 Convergence

As discussed in Section 4.8, there is no stability criterion for the streamline method,

and any desired time step size between pressure solves (�tp) can be taken. However,
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Figure 4.18: Field oil recovery and individual well GOR responses in a full �ve-spot
pattern FCM displacement for three di�erent permeability models.

when modeling nonlinear displacements, the nonlinearity is accounted for by updat-

ing the pressure �eld. The number of updates is dependent on the strength of the

nonlinearity which in turn is a function of the mobility ratio, the displacement type,

and the level of heterogeneity. Figures 4.19 and 4.20 illustrate the convergence in

recovery of the streamline method as the number of pressure solves increases for two

di�erent displacement mechanisms. The reservoir model is Model 1 used in the pre-

vious sections. These �gures show that about 10 pressure solves result in a converged

solution for the water
ood, while about 25 pressure solves result in a converged so-

lution for the FCM displacement, over two pore volumes injected. As expected, the

more nonlinear problem required a greater number of pressure solves to capture the
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Figure 4.19: Convergence of water
ood displacement recovery as the number of pres-
sure solves for the streamline method are increased.

nonlinearity. Recall that ECLIPSE required 206 pressure solves for the water
ood

and 326 for the FCM displacement.

The fact that the streamline method can produce converged solutions using an

order of magnitude fewer pressure solves implies that the displacements are only a

weak function of the changing 
uid distribution (weakly nonlinear). In other words,

for heterogeneity dominated displacements, the total mobility �eld is a greater func-

tion of the permeability distribution than the 
uid distribution. A displacement that

is only weakly nonlinear leads to streamline paths that remain relatively constant as

a displacement proceeds. Thus, the required assumption of uniform initial conditions

along streamline paths, in order to map analytical solutions, is valid for heterogeneity

dominated displacements.

4.14 Sensitivity to Streamline Weighting Factor

In Section 4.3, it was assumed that average gridblock properties could be determined

based on weighting each streamline's property within a gridblock by its ��i only. The
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Figure 4.20: Convergence of �rst-contact miscible displacement recovery as the num-
ber of pressure solves for the streamline method are increased.


ux or volume associated with each streamline within a gridblock was ignored, giving

the de�nition for the weighting factor in Eq. 4.11.

In this section, the 125�50 cross-sectional model FCM displacement used in Sec-

tion 4.12.2 is considered here in the context of four di�erent weighting methods.

As the displacement proceeds, the nonlinearity of a FCM displacement will magnify

small di�erences, if any, due to the method of calculation of gridblock properties.

The following four cases for studying the e�ect of !i on displacement performance

are considered.

Case 1 Standard method used for all cases in this thesis. The weighting factor

is calculated using the de�nition of Eq. 4.11. A total of 250 streamlines are

launched from the 50 injection block faces. The number of streamlines launched

from each face is determined such that each streamline in the model carries

approximately the same 
ux.

Case 2 A total of 250 streamlines are launched from the 50 injection block faces.

The number of streamlines launched from each face is determined such that
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each streamline in the model carries approximately the same 
ux. However,

the weighting factor now includes the streamline 
ux,

!i =
qsli ��iPnsl
gb

i=1 q
sl
i ��i

: (4.31)

Case 3 Five streamlines are launched from each of the 50 injection block faces.

The total number of streamlines remains 250, but the 
ux assigned to each

streamline can vary considerably. The weighting factor includes the streamline


ux and is described by Eq. 4.31.

Case 4 Five streamlines are launched from each of the 50 injection block faces. The

weighting factor does not include the streamline 
ux, but instead is described

by Eq. 4.11.

The recovery results for the four cases described above are presented in Fig. 4.21.

Solvent saturation pro�les at tD=0.25 for each case are shown in Fig. 4.22. There are

no di�erences in recoveries or saturation pro�les between the four cases. Clearly, the

choice of weighting factor has no e�ect on the �nal solution { calculated gridblock

properties are the same for each choice. This is expected since gridblock properties

are a function of the streamline properties which in turn are a function of the time-

of-
ight. Ultimately, since the time-of-
ight along each streamline in a gridblock is

independent of the weighting factor, gridblock properties are also independent of the

weighting factor. Furthermore, in the context of the convergence results of Section

4.13, the number of times a pressure �eld is updated to capture a displacements non-

linearity, has a greater impact on displacement predictions than the type of weighting

factor used.
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Figure 4.21: Sensitivity of solvent recovery to type of weighting factor method used
to determine average gridblock properties.

4.15 Gravity E�ects

Gravity e�ects can be accounted for with the streamline method presented in this

chapter. Streamlines follow the total velocity �eld rather than individual phase ve-

locities; thus only gravity e�ects in FCM displacements for ! = 1 can be modeled.5

Blunt et al. [10] provide a thorough discussion on modeling gravity e�ects when map-

ping analytical solutions to the streamlines. They provide detailed comparisons of

the streamline method to the BP FCT research code for ten two-dimensional hetero-

geneous �elds. In order to properly compare against the FCT code they also added

a small amount of longitudinal and transverse dispersion to the streamline method

to replicate numerical dispersion in the FCT code.6 The authors noted that for unit

mobility ratio (M = 1) displacements, the streamline method gave acceptable results

5For !=1 the phase properties are identical at the gridblock scale and Eq. 4.1 can be used to
describe the movement of phases.

6Transverse dispersion is added by retracing streamline paths multiple times with a random
component added to the tracing algorithm.
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Figure 4.22: Solvent pro�le in a 125�50 heterogeneous FCM displacement, using four
di�erent streamline weighting factor methods to calculate average gridblock proper-
ties.
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for Ng < 2. The method was also applied to non-unit mobility ratio (M > 1) �rst-

contact miscible displacements. For M < 10 the streamline method gave acceptable

results for Ng < 1. Additionally, they noted that the streamline method was 100 to

150 times faster than the FCT results. This was due to the fact that the streamline

method required 20-40 time steps per pore volume injected, whereas the conventional

method required 2000-3000 times steps per pore volume injected.

Blunt et al. [10] comment that the method works best for cases where the princi-

pal 
ow directions are dominated more by heterogeneity than by gravity. Although

not discussed in their paper, one di�culty with accounting for gravity even in single

phase displacements is that for large gravity forces, circulation cells occur. Thus,

a streamline rather than joining injectors to producers, can become a loop with no

beginning or end. The di�culty now is that there are no analytical solutions to map

to a closed domain without a starting boundary. This problem can be overcome by

mapping numerical solutions to streamlines. Rather than redo work already presented

by Blunt et al. [10] subject to the above limitations, gravity e�ects using the stream-

line method will be accounted for by a numerical approach and will be discussed in

Chapter 6.

4.16 Field Applications

The examples given in the previous sections all demonstrate that the streamline

method is fast and accurate for heterogeneity dominated displacements. This section

illustrates some practical uses of the streamline method due to its speed.

4.16.1 Million Gridblock Water
ood

The ability to solve large models (106 gridblocks) is important since it allows for

increased resolution of the permeability �eld. This is especially important if perme-

ability is considered to have a dominant e�ect on displacement performance. Addi-

tionally, large models increase the number of gridblocks between wells and allow for

greater resolution of displacement fronts. For large models it is important to limit
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the number of times needed to solve for the pressure and saturation �elds, since this

represents the majority of CPU time. The decoupling of heterogeneity from 
uid 
ow

makes the streamline method well suited to solve large problems speci�cally because

of the reduction in the number of time steps required.

To illustrate the use of the streamline method on a large model, consider a �ne

scale 1.16 million gridblock (220�220�24) permeability �eld (Fig. 4.23). The �eld

was created using the sequential Gaussian simulation method in GSLIB [26]. The

permeability �eld has an anisotropic structure with an on-trend correlation length of

�c = 0:6, o�-trend �c = 0:05, and a vertical correlation length of �c = 0:6. Imposed

on the model was a single 5-spot well pattern with a central injector in the lower 12

layers and a producer in the upper twelve layers in each corner. Using the 1D pro�le

in Fig. 4.12, a �ne scale water
ood displacement was generated with the streamline

method in 50 hours on a standard workstation. Because of time and memory con-

straints, ECLIPSE implicit results were generated on an upscaled 72,000 gridblock

(110�110�6) model and required 23 hours. For reference, upscaled streamline results

were also generated and required 0.75 hours. Note that simple geometric upscaling of

absolute permeabilities was used, with no upscaling of relative permeabilities. Per-

meability histograms for each �eld are shown in Fig. 4.24. The upscaling process

reduced the standard deviation in the distribution from 102 mD to 70 mD and, more

importantly, reduced the concentration of high permeability values.

Figure 4.25 provides a visual comparison of the water saturation in the �ve-spot at

tD=0.2 for each model. Because of the absence of numerical di�usion, both streamline

cases show water breakthrough at all four producers, not just the on-trend produc-

ers as with ECLIPSE. Also, both streamline solutions show resolution to a single

gridblock scale.

Figure 4.26 compares the oil recovery of the three cases. Note that there is a

greater change in recovery due to upscaling than due to the choice of simulation

method. For this problem, having the ability to capture all of the �rst order in
uences

(due to permeability) outweighs the approximations in mapping analytical solutions

to the streamlines. The upscaled �nite di�erence solution overestimates recovery by

5% as compared with the �ne scale results.



70 CHAPTER 4. MAPPING 1D ANALYTICAL SOLUTIONS



4.16. FIELD APPLICATIONS 71

 

 

F
re

qu
en

cy

Permeability (mD)

0.1 1 10 100 1000

0.000

0.050

0.100

0.150

0.200

Fine Scale Permeability Field
Number of Data 1161600

mean 37.33
std. dev. 102.10

coef. of var 2.73

maximum 500.00
upper quartile 5.26

median 0.70
lower quartile 0.13

minimum 0.10

F
re

qu
en

cy

Permeability (mD)

0.1 1 10 100 1000

0.000

0.040

0.080

0.120

Upscaled Permeability Field
Number of Data 72600

mean 22.73
std. dev. 69.60

coef. of var 3.06

maximum 489.43
upper quartile 5.14

median 0.75
lower quartile 0.18

minimum 0.10

Figure 4.24: Histograms of �ne scale million gridblock permeability �eld and upscaled
72,600 gridblock permeability �eld.



72 CHAPTER 4. MAPPING 1D ANALYTICAL SOLUTIONS



4.16. FIELD APPLICATIONS 73

0.0

0.2

0.4

0.6

0.8

1.0
D

im
en

si
on

le
ss

 R
ec

ov
er

y,
 N

P
D

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

 

3DSL (220X220X24)
3DSL (110X110X6)
ECLIPSE (110X110X6)

Figure 4.26: Water
ood recovery comparisons between the million gridblock model
and an upscaled 72,600 gridblock model.

4.16.2 Screening Equiprobable Realizations

The streamline method is also ideally suited to screen multiple geostatistical realiza-

tions before resorting to a more conventional solution method [69]. As an example,

consider a 100,000 gridblock water
ood model with 8 producers, 9 injectors, and

one horizontal producer, completed in 5-spot patterns (Fig. 4.27). The injectors

and vertical producers are full interval completions, while the horizontal producer is

completed in layer �ve only. Thirty equiprobable realizations were created using se-

quential Gaussian simulation. First, the streamline method was used to generate the

corresponding oil recovery curves for each permeability �eld. Next, the permeability

�elds resulting in the high and low recoveries were rerun using ECLIPSE. The oil

recovery results are summarized in Fig. 4.28. Clearly, the range in recovery predicted

by the streamline method is also predicted by the two ECLIPSE runs. Note however,

that the ECLIPSE results are shifted consistently upward, which is attributed to nu-

merical di�usion e�ects within ECLIPSE. For these multiwell �eld cases, 3DSL results
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Figure 4.27: Well locations for 100�100�10 �eld model, 8 producers, 9 injectors, and
1 horizontal producer.

for a single image were generated in 1.5 hours, while ECLIPSE implicit results were

generated in 140 hours for the low recovery case and 300 hours for the high recovery

case. The speed up for this large water
ood problem is now 100-200 times, versus 50

times for the 3 smaller 50,000 gridblock water
oods studied in Section 4.11.2.

For existing �elds with large amounts of production data to honor, rather than

using the streamline method to screen multiple images, the method can be used in the

history matching process since multiple runs required to obtain a history match can

be performed very quickly [55, 27, 28]. Once a reservoir model that satis�es historical

data is built, either the streamline method or a conventional simulator could then be

used for prediction purposes.

4.17 Chapter Summary

This chapter outlined the use of the streamline method to predict displacements when

mapping analytical solutions to the streamlines. For tracer 
ow, the method is exact

and can quantify the levels of numerical di�usion in conventional methods. Although

mapping analytical solutions assumes that uniform initial conditions prevail along
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Figure 4.28: Application of the streamline method to screen realizations before run-
ning the high and low recovery models with ECLIPSE.

streamline paths, it was shown that this is a good assumption for 
ow dominated by

heterogeneity. For nonlinear displacements like water
ood and FCM displacements,

streamline paths are recalculated periodically to honor the changing mobility �eld. A

key point is that the number of recalculations of the streamline paths (pressure �eld)

required to reach a converged solution was 10 to 100 times less than conventional

implicit �nite di�erence methods giving speed-up factors between 1 and 2 orders of

magnitude. Because of speed, the streamline method is also ideally suited to solving

large problems (106 gridblocks) or screening geostatistical images. As shown, having

the ability to model permeability �elds with greater resolution did result is more

pessimistic recovery predictions.

Mapping analytical 1D solutions is a very fast and accurate method with no nu-

merical di�usion or mixing. However, mapping 1D analytical solutions also restricts

the range of displacements that can be properly modeled. Any case that results

in nonuniform initial conditions along streamlines cannot be modeled. Examples

include reservoirs with nonuniform initial saturations, or changing well patterns. Ad-

ditionally, only limited gravity e�ects can be accounted for in FCM displacements.
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Multiphase gravity e�ects cannot be modeled. Accounting for gravity and nonuni-

form initial conditions are requirements to extend the streamline method to real �eld

problems. Methods to overcome these limitations are discussed in Chapters 5 and 6.



Chapter 5

Mapping 1D Numerical Solutions

5.1 Introduction

This chapter describes mapping numerically generated solutions along streamlines.

This idea was �rst proposed by Bommer & Schecter [11] to model uranium leaching

in 2D porous media. The advantage of mapping numerical solutions is that a uniform

initial condition along a streamline is no longer required. The method involves tak-

ing the conditions that exist along a recalculated streamline path and moving them

forward in space and time within a 1D numerical solver. The new conditions are

then mapped back to the underlying gridblocks which the streamline passes through.

Because the workings of the 1D solver are completely decoupled from the full 3D

problem, the numerical method is straight forward to implement into a 3D model.1

The process of moving the existing grid saturations forward along updated stream-

lines at each time step is equivalent to moving saturations along pathlines. Bear [8]

describes a pathline for a 
uid particle as the locus of its positions in space as time

passes. For displacements where the streamline paths do not change with time, path-

lines and streamlines are equivalent. However, for nonlinear displacements or cases

with changing boundary conditions, the true motion of 
uids is along pathlines. In

Chapter 4, 
uid pathlines were ignored. This was a valid assumption for heterogeneity

dominated displacements with constant boundary conditions. In this chapter, 
uid

1Some results from chapters 4 and 5 have been published in Batycky et al. [6, 5].

77
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pathlines are approximated by piecing together the multiple streamlines that a 
uid

element will intersect over its lifetime. In other words, a 
uid element is moved along

the current streamlines for a small time and then the streamline paths are updated

and the movement continued. Chapters 5 and 6 will show that moving 
uids along

pathlines extends the streamline method to a greater range of displacement problems.

5.2 Mapping a 1D Numerical Solution to a Stream-

line

If the multiphase gravity term in Eq. 3.13 is assumed to be Gi = 0, then Eq. 3.13

reduces to the following one-dimensional equation along a streamline,

@Sj
@t

+
@fj
@�

= 0; (5.1)

implying that saturations are only a function of the total convective velocity �eld.

Eq. 5.1 is a �rst-order hyperbolic PDE with the following initial condition at time tn,

Sj = Sj(�; t
n); (5.2)

and a constant 
ux boundary condition at �=0 (injection well location) of,

fj = fj(0; t
n): (5.3)

� represents the coordinate along a particular streamline in 3D space. These are

the same equations that are solved in Chapter 4. However, the key advantage of a

numerical method is that the initial condition is no longer required to be uniform but

can vary along the streamline. The trade-o� is that additional CPU time is required

to calculate new solutions to Eq. 5.1 as opposed to the simple scaling rule used for

analytical solutions.

5.2.1 Picking Up Initial Conditions From Streamlines

Once the pressure �eld and streamline paths are recalculated (Fig. 5.1.b), the �rst

step is to de�ne the saturation distribution present along a recalculated streamline
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path. Saturation versus time-of-
ight information is recorded for each streamline

traced from injector to producer. Figure 5.1.c is a simple picture of this recording

process. A new saturation value is recorded over a ��blk each time the streamline

enters a new gridblock. Because ��blk can vary between gridblocks, the S versus �

information is de�ned on an irregular � grid. This behavior is obvious if one considers

a streamline being traced in a quarter �ve-spot pattern on a regular Cartesian grid.

��blk will be very small near the producer and injector but quite large in the middle of

the domain. Thus, in � space there will be greater resolution where 
ow velocities are

high than where 
ow velocities are low. The solution in � space results in a natural

grid re�nement of the 1D solution.

Before the S versus � pro�le can be passed to the 1D numerical solver, the infor-

mation is transformed onto a regularly spaced � grid (Fig. 5.1.d). Transforming onto

a regular 1D grid simpli�es the calculation of internode 
uxes within the 1D solver.

The number of nodes to use for the regularly spaced � grid is based on the number of

gridblocks that a streamline passes through multiplied by a factor of two. Naturally,

longer streamlines will contain more nodes, while shorter streamlines will contain less

nodes. For each streamline, saturation values are assigned to the regular � grid such

that, Z s

0

Sjd� jregular =
Z s

0

Sjd� jirregular: (5.4)

By honoring Eq. 5.4, mass is always conserved in the transformation process.

Transforming onto a regular 1D grid results in averaging of saturations, and repre-

sents one source of numerical di�usion in the streamline method. As an example, the

e�ect of the transformation method can be seen by di�erences in saturation pro�les

between Fig. 5.1.c and Fig. 5.1.d, where the magnitude of local high saturation values

have been reduced.

5.2.2 The 1D Numerical Solver

With the initial information along a streamline de�ned on a regularly spaced � grid,

the next step is to move the saturations forward in time by �t. For simplicity,

Eq. 5.1 is solved using a standard single-point upstream (SPU) weighting method



80 CHAPTER 5. MAPPING 1D NUMERICAL SOLUTIONS

 

 

 
 

 

 

(a)
pressure field = P(tn-1)

saturation field = S(tn)
streamlines = sl(tn-1)

 

 

 

 

 

 

(b)
update pressure field = P(tn)

saturation field = S(tn)
update streamlines = sl(tn)

 

 

 

 

 

 

(h)
pressure field = P(tn)

update saturation field = S(tn+1)
update streamlines = sl(tn)

S
(t

n
)

τ

 

(c) trace streamline profile
onto irregular τ grid

S
(t

n
)

τ

 

(d) map to 1D
regular τ grid

(e) 1D SOLVER move forward ∆tn+1

S
(t

n+
1
)

τ

 

(f) 1D regular τ grid

S
(t

n+
1
)

τ

 

(g) map back to 1D
irregular τ grid

Figure 5.1: Pictorial of picking up a solution from the saturation grid, moving it
forward, then mapping to a new saturation grid.
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that is explicit in time. Discretization of Eq. 5.1 gives the saturation at the end of

the nth time step for node i as,

Sn+1
i = Sn

i �
�tn+1sl

��sl
(fni � fni�1) (5.5)

where �tn+1sl is the current time step size along a streamline and ��sl is the time-of-


ight distance between nodes for a given streamline.

A stable solution to Eq. 5.5 is governed by the value of the Courant Number along

a streamline,

N sl
c =

�tsl vmax

��sl
; (5.6)

where vmax represents the maximum wave speed of all the saturations present along

the streamline. For an explicit in time method, the maximum stable time step size

allowable for solving Eq. 5.5 is determined by the Courant-Fredrich-Lewy stability

criterion, N sl
c � 1. The fastest saturation velocity cannot travel more than one �

node per time step. Using Eq. 5.6, the maximum time step size for Eq. 5.5 is de�ned

as,

�tsl �
Nc��sl
vmax

; (5.7)

where vmax typically represents the leading shock speed. For each streamline traced

in the domain, Eq. 5.5 is solved multiple times until,

�t =
X
n=1

�tnsl: (5.8)

The numerical solution of Eq. 5.1 does result in numerical di�usion. Lantz [50]

quanti�ed the level of numerical di�usion for a SPU scheme in terms of a numerical

Peclet Number (Npe). The Peclet Number for each streamline is given by,

N sl
pe =

2

1�N sl
c

: (5.9)

Since N sl
c is de�ned based on the leading shock speed, N sl

pe characterizes the level

of numerical di�usion at the leading shock along each streamline. For tracer and

FCM displacements, N sl
c =0.9999, giving a Peclet number for the leading front of

Npe=20,000. Thus, for tracer and FCM displacements, there is minimal numerical

di�usion associated with the 1D solver.
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5.2.3 Mapping Updated Solution Back to Grid

After a streamline solution has been moved forward by �t on the regularly � spaced

nodes, it is transfered back to the original irregular � grid. Again, this transfer is a

source of numerical di�usion as seen by the di�erences between the saturation pro�les

in Fig. 5.1.f and Fig. 5.1.g. Local high and low saturation values are averaged out over

certain locations along the � coordinate. This transformation has a greater averaging

e�ect on changing the saturation pro�le than any numerical di�usion associated with

the 1D solver.

Once the saturation variables are transformed to the irregular � grid they can then

be mapped onto a new saturation grid. Within the new grid, saturation properties for

each gridblock are accumulated until all streamlines have been traced in the domain.

After all streamlines have been traced and mapped to the new grid, average grid-

block saturations are calculated using the time-of-
ight weighting method discussed

in Section 4.3 (Eq. 4.12). This latter averaging process represents the major source of

numerical mixing in the streamline method and is discussed in detail in Section 5.6.

Rather than using Eq. 4.13, the gridblock average total mobility is now determined

using,

��t;gb =
npX
j=1

krj( �Sgb)

�j
: (5.10)

With all grid 
uid properties now de�ned at the new time level, the properties are

copied back to the original saturation grid.

5.3 Missed Gridblocks

Not all gridblocks will contain a streamline when tracing from injectors to producers.

These missed gridblocks are assigned properties in a di�erent manner than the method

discussed in Section 4.4, when analytical solutions were mapped to streamlines. The

key di�erence when mapping numerical solutions is the requirement of an injection

boundary condition for the numerical solution. The injection conditions is de�ned

by tracing from missed gridblocks back until an injector is reached. The properties

along the streamline are then moved forward in the manner discussed in the above
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section. However, when mapping properties back to the underlying saturation grid,

only those gridblocks that did not have a streamline (missed gridblocks) are assigned

updated saturations.

Missed gridblocks typically have very low 
ow rates associated with them and

thus very large � 's. When mapping to and from the re�ned 1D � grid, these large � 's

tend to under weight the saturation values of upstream gridblocks and would result in

unusually low saturation values being reassigned to upstream gridblocks that already

carry streamlines in them. This is why in the remapping, only the missed gridblocks

are assigned properties.

5.4 Time Stepping

As when mapping analytical solutions, an underlying idea is that the streamline

paths are allowed to change in time to honor the changing total mobility �eld. Unlike

mapping analytical solutions, the requirement of uniform initial conditions along re-

calculated streamline paths is no longer necessary. The method is completely general

when mapping numerical solutions.

To move a 3D solution forward in time from tn to tn+1 = tn+�tn+1p the following

steps are:

1. At the start of a new time step, tn+1, solve for the pressure �eld P using Eq. 3.7.

Recall that rate or pressure constraints are de�ned for the new time step tn+1

whereas the mobility �eld is de�ned from the mapping at the previous time step

tn (an IMPES method).

2. Apply Darcy's Law (Eq. 3.5) to determine the total velocity at gridblock faces.

3. Trace streamlines from injectors to producers as outlined in Chapter 3. While

tracing a streamline do the following:

(a) Pick up the current saturation information from each gridblock that the

streamline passes through. In this manner, a pro�le of saturation versus
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� is generated for the streamline at time tn (Fig. 5.1.c). Transform to a

regular �ne spaced � grid (Fig. 5.1.d).

(b) Pass the saturation pro�le into a 1D numerical solver and move the satu-

rations forward by �tn+1p by solving Eq. 5.1 (Fig. 5.1.e).

(c) Map the new saturation pro�le back to the original streamline � grid

(Fig. 5.1.g), then to a new saturation grid.

4. Average all the streamline properties within each gridblock of the new grid to

determine the saturation distribution at tn+1 (Fig. 5.1.h).

5. Return to step 1.

The time step size between pressure solves is de�ned as �tp. The time step

size between saturation remappings to the underlying grid (convective step along

streamlines) is de�ned at �tc and is limited by the CFL constraint for an explicit

scheme. This constraint requires that 
uid cannot move more than one gridblock per

convective time step.

In a conventional IMPES scheme, the value of �tc is based on the global grid CFL

constraint which is determined by the largest 
ow velocity in the domain { typically

near a well.2 This leads to very small values of �tc. Fronts far from wells are moved at

less than the optimal one gridblock per convective step.3 Moreover, the pressure �eld

is typically recomputed at each �tc. This means that �tp = �tc in a conventional

method and the pressure �eld is recomputed an unnecessarily large number of times.

In a conventional implicit scheme there is no constraint on the time step size,

but the trade-o� is convergence problems and increased numerical di�usion over the

IMPES scheme.

For the streamline method, �tc and �tp are completely decoupled by moving


uids along streamlines. There is no longer a global grid CFL constraint, and typically

�tp>>�tc. Furthermore, �tc in the streamline method is much greater than �tc in a

2Grid re�nement around wells can actually make the maximum size of �tc even smaller.
3An adaptive implicit �nite-di�erence method, whereby a fully implicit scheme is used near wells

while an IMPES scheme is used away from wells, can overcome this problem.
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conventional �nite-di�erence method. The constraint on the convective time step size

is now within the 1D solver giving a local streamline CFL constraint (Section 5.2.2).

Thus for each streamline, many small time steps are taken within the 1D solver to

move a solution forward by �tc. Solving multiple 1D equations along streamlines is

much faster than solving the full 3D equation multiple times to reach a desired �tc.

Additionally, for each streamline the fastest front is moved at the optimal local CFL

number. Thus for tracer and FCM displacements where the front velocity is 1 for all

saturations, all fronts are moved at a CFL number of 1 along streamlines. That is,

the front moves one � interval per �tsl.

By removing the global grid CFL constraint the issue of converged solutions is

still present, as was discussed in Chapter 4. Convergence of the numerical method is

discussed in Section 6.5.

5.5 Volume Balance Errors

With the numerical mapping method, gridblock saturations are picked up from the

underlying grid, moved forward, and then mapped back down. Because grid infor-

mation is explicitly moved forward, there should be no need for a time correction, as

was required when mapping analytical solutions (Section 4.7). However, the process

of mapping back to the underlying grid and then determining average gridblock sat-

urations using the �� weighting method (Section 4.3), does not ensure that volume

is conserved. The volume balance problem occurs because saturations rather than

explict volumes are moved along streamlines. Thus a time correction is still required

after each remapping step to conserve volume exactly. For displacements studied

here, the time correction is on the order 0.01% { 0.1% of the true time increment.

5.6 Mixing Due to Remapping

After all streamlines and missed gridblocks have been traced, average gridblock satu-

rations are calculated as described in Section 4.3. For any gridblock with two or more

streamlines, the gridblock property is an average based on the properties of all the
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streamlines. Streamlines communicate with each other on a gridblock scale each time

this averaging process occurs. In the numerical mapping technique, these average

properties become the new initial conditions that are moved forward at the next time

step. The more times that mapping back to the underlying grid occurs, the more

mixing that results. This mixing process represents the main source of numerical

di�usion when mapping numerical solutions to streamlines. The mixing e�ect occurs

because saturation information is only known to within a single gridblock scale.

To illustrate the mixing e�ect due to remapping, consider the tracer displacement

shown in Fig. 5.2. Recall that with a tracer displacement, the exact solution (di�usion

free) can be obtained using the method discussed in Chapter 4. The exact solution

is shown in column 1. Column 2 represents the saturation pro�le by mapping to

the underlying grid only once to reach tD=0.6. The entire time step is taken within

the 1D solver and the �nal solution is almost identical to the reference answer. For

the third column of saturation pro�les, three remapping steps were taken to reach

tD=0.6. There is now more mixing present at tD=0.4 and tD=0.6 than compared

with the analytical results. Finally, in column 4 are the resulting saturation pro�les

when taking 6 time steps to reach tD=0.6. Clearly, the amount of mixing increases at

each time step, and at tD=0.6 mixing in the column 4 picture is greater than in the

previous columns at tD=0.6. Figure 5.2 illustrates that when mapping 1D numerical

pro�les, the solution at a new time step is dependent on the solution at the previous

time step. Any previously mixed saturations are moved forward and remixed at the

end of the next time step. On the other hand, when mapping analytical solutions,

the underlying saturation pro�le was always ignored and a new analytical solution

scaled to the new time was mapped, resulting in di�usion-free solutions.

Notice in Fig. 5.2 that there is essentially no di�erence between the saturation

pro�les at tD=0.6 for the analytical method (column 1) and the numerical method

with only one mapping step (column 2). Any minor di�erences are due to di�usion

e�ects within the 1D solver and the transformation process from irregular to regular

� grids. These di�usion e�ects are smaller than the di�usion e�ects simply due to the

number of mapping steps, as noted by increased mixing in the tD=0.6 pro�les from

columns 2-4. Clearly the SPU scheme is su�ciently accurate. The accuracy is a result
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of being able to maintain very large numerical Peclet numbers for each streamline,

within the 1D solver. A more accurate TVD scheme was also implemented for the 1D

solver [9]. However, the TVD scheme did not reduce the level of numerical di�usion

of the �nal 2D solutions. Again, this implies that di�usion associated with mapping

solutions to and from the underlying grid is greater than numerical di�usion associated

with the 1D solver.

It is also worth comparing the level of mixing present in the streamline simulator

against ECLIPSE. The tracer pro�les for the ECLIPSE fully implicit scheme and the

corresponding 3DSL results are shown in Fig. 5.3. The ECLIPSE implicit method

required 43 time steps to reach tD=0.3. By contrast, forcing 3DSL to take 43 time

steps produces superior results with less numerical di�usion. The ECLIPSE-IMPES

solution is shown in Fig. 5.4, which requires 296 time steps and has reduced numerical

di�usion compared with the implicit results. Taking 296 time steps with 3DSL gives

a similar tracer distribution to the ECLIPSE IMPES results. Note that there is more

mixing now present in the 3DSL solutions compared to those in Fig. 5.2 column 4

which is due to the greater number of remappings.

Another key point for Fig. 5.4 is that, because of the global CFL condition

ECLIPSE takes an excessive number of convective time steps to reach tD=0.3 (very

small �tc), while the streamline method gives a more accurate and faster result in

one mapping step (Fig. 5.2, column 2). The ability to take large time steps is why the

streamline method exhibits such large speed-up factors. This example also highlights

that, using the optimal global CFL condition (ECLIPSE) gives result that are less

accurate than the results obtained by using the optimal local CFL condition along

each streamline. Increased accuracy is important for FCM displacements where large

levels of numerical di�usion can alter simulation results, as will be shown in Section

5.8.

5.7 Immiscible Two-Phase Displacements

To model a water
ood, a numerical solution can be mapped along streamlines instead

of mapping an analytical 1D Buckley-Leverett pro�le as was done in the previous
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ECLIPSE - IMPLICIT - 43 TIME STEPS

(a)

 

 

3DSL - 43 TIME STEPS

(b)

Figure 5.3: Comparison of tracer pro�les at tD=0.3 in a 250�100 heterogeneous
domain showing the level of numerical di�usion between (a) ECLIPSE implicit and
(b) streamline results for the same number of time steps.

 

 

ECLIPSE - IMPES - 296 TIME STEPS

(a)

 

 

3DSL - 296 TIME STEPS

(b)

Figure 5.4: Comparison of tracer pro�les at tD=0.3 in a 250�100 heterogeneous
domain showing the level of numerical di�usion between (a) ECLIPSE-IMPES and
(b) streamline results for the same number of time steps.
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chapter. The same 1D solver used for tracer and FCM displacements is used here.

However, appropriate two-phase relative permeability curves and 
uid viscosities are

now required. For water
ood displacements, the maximum wave speed is greater than

1 and is associated with the velocity of the Buckley-Leverett shock. For stability

reasons within the 1D solver Nc 6= 1 until the shock has developed. Fortunately,

a 1D water
ood displacement is self-sharpening and rather insensitive to numerical

di�usion. Thus, the value of Nc has only a small e�ect on smearing of the leading

shock.

The three 50�50�20 permeability �elds shown in Fig. 4.13 are again used here.

For comparison with the results of Section 4.11.2, well and 
uid properties as well as

the number of time steps are kept the same. The well geometry is a 5-spot pattern

with a producer in the upper 10 gridblocks of each corner and an injector in the lower

10 central gridblocks. The 
uid viscosity ratio is �o=�w=10. A comparison of results

between the streamline method and ECLIPSE - IMPLICIT for each permeability

model is shown in Fig. 5.5. Individual well response and total �eld recoveries between

the two methods are in agreement.

Note that for each permeability model, the recovery produced by 3DSL and

ECLIPSE are now almost identical. Recall that when analytical solutions were

mapped along the streamlines, there was a slight di�erence between the two meth-

ods (Fig. 4.14). The di�erence was attributed to numerical di�usion within ECLIPSE

since the analytical method is di�usion-free. Thus for water
ood displacements, when

mapping numerical solutions to the streamlines, the mixing that results from mapping

to the underlying saturation grid appears to replicate the mixing within ECLIPSE.

Runtime performance for each simulation method is summarized in Table 5.1. For

these cases, the streamline method was approximately 20 times faster than ECLIPSE.

5.8 First-Contact Miscible Displacements

First-contact miscible displacements can be modeled with the numerical solver used

for the two-phase immiscible displacements. The di�erence lies in the form of the
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Figure 5.5: Comparison of recovery and individual producer watercuts between 3DSL
(numerical) and ECLIPSE - IMPLICIT, for three di�erent permeability models.
Compare with Fig. 4.14 showing 3DSL analytical results.

3DSL ECLIPSE - implicit
Case CPU Time Pressure CPU Time Matrix Speed-up

(min) Steps Solves (min) Steps Solves Factors
1 36 50 25 1062 206 663 30
2 48 50 25 600 182 340 13
3 32 50 25 951 187 599 30

Table 5.1: Comparison of simulator performance parameters between the streamline
method and ECLIPSE for 3 di�erent water
ood 5-spot models.
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fractional 
ow function. Within the streamline simulator the fraction 
ow function

is given by the Todd & Longsta� model (see Section 4.12.1).

5.8.1 Modeling Viscous Fingering

As the level of heterogeneity for a FCM displacement is reduced, 
uid movement be-

comes less dominated by heterogeneity and more dominated by the 
uid distribution.

An unstable �rst-contact miscible displacement in a mildly heterogeneous porous

media will lead to viscous �ngering of the injected 
uid through the in place 
uid.

Viscous �ngering problems are di�cult to model for any simulation method. See

Araktingi & Orr [1, 2], Tchelepi & Orr [67], or Christie [17] for a thorough discussion

of numerical simulation techniques for viscous �ngering in porous media.

Recall in Chapter 4 that the streamline technique coupled with the correct analyt-

ical 1D solution (Koval's model) could model FCM displacements provided the 
ow

was dominated by heterogeneity. It was assumed that viscous �ngering was captured

in an average sense along each streamline. However, for less heterogeneous systems

the displacement method could not reproduce explicit viscous �ngering. Thiele [68]

presents FCM displacements where the analytical streamline method failed because

recovery was dominated by explicit �ngering patterns. Viscous �ngering problems

are highly unstable and nonlinear. Component pathlines are far di�erent than in-

stantaneous streamlines. The numerical streamline method has the advantage over

the analytical method of correctly moving components along pathlines.

As an example consider a mildly heterogeneous 250�100 cross sectional model

FCM displacement [68]. The 
uid viscosity ratio is �o=�g=10 and a Todd & Longsta�

mixing parameter of !=1 is used, which assumes complete mixing of the solvent and

oil at the gridblock scale. Figure 5.6 compares the solvent pro�les at tD=0.3 for the

numerical streamline method, the BP FCT research code, ECLIPSE IMPES two-

point upstream method, and ECLIPSE - IMPES single point upstream method. Also

included for reference is the result from mapping Koval's analytical solution along

streamlines.

Figure 5.6 demonstrates that by mapping numerical solutions, the streamline
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3DSL KOVAL MODEL - tD=0.3

Figure 5.6: FCM displacement in a mildly heterogeneous 250�100 porous media.
Comparison of �nger pro�les at tD=0.3 for 5 di�erent methods.
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Figure 5.7: FCM recovery comparisons for four numerical methods. Results using
the anaytical streamline method are included for reference.

method does produce viscous �ngering, though �nger width and locations di�er from

results obtained with more conventional numerical methods. However, because there

is some correlated heterogeneity, each method identi�es a central high permeability

region. It is unclear what the reference solution is since the level of numerical dif-

fusion present in each method does e�ect the results of this unstable displacement.

This example demonstrates that di�erences in the numerical method can lead to large

di�erences in �nger patterns. Certainly, comparing the di�erence using single-point

upstream weighting versus two-point upstream weighting within ECLIPSE illustrates

this fact. The BP FCT code which also uses a two-point upstream method produces

results similar to the high-order ECLIPSE results. One key di�erence in the four nu-

merical methods is that the leading edges of all the �ngers in the conventional methods

are di�use with concentrations less than one. However, the streamline results retain

the sharp 
uid contrast at the �nger tips. To reach tD=0.3, the streamline method

required 100 times fewer time steps than the other methods and as the preceeding

section demonstrated, there is considerably less mixing due to numerical e�ects in
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the streamline method than conventional methods. Furthermore, the maximum front

speed is far less than the optimal one gridblock per time step in the conventional

methods { another source of numerical di�usion. It is possible that the thinner more

di�use �ngers in the conventional numerical methods are a result of increased mixing

due to numerical di�usion.

It is worth noting that the streamline results shown here are somewhat unrealistic

since they do not account for physical di�usion. The results approach the limiting case

of no di�usion. Both Tchelepi & Orr [67] and Christie et al. [20] note the importance

of including a physical di�usion tensor in order to match experimental results.

A comparison of the recovery curves for the di�erent methods is shown in Fig. 5.7.

The high-order ECLIPSE results agree very well with the BP FCT results, much more

so than the single-point upstream ECLIPSE results. The fatter, less di�use �nger

pattern in the streamline method gives higher recovery results than the high-order

numerical methods.

5.8.2 E�ect of ! on Field Scale Displacements

For FCM displacements, the only adjustable parameter in the Todd & Longsta�

model, and hence the streamline simulator, is the mixing parameter !. The mixing

parameter attempts to capture �ngering between solvent and oil at a sub-gridblock

scale due to heterogeneities that exist at a sub-gridblock scale. Todd & Longsta�

[73] found that !=2/3 worked well to forecast recovery in laboratory sand packs,

while !=1/3 was more appropriate for �eld scale displacements. Their conclusions

are dependent on the gridblock sizes they used. In general, their results indicate that

improved mixing of the solvent and oil occured at the smaller scale.

The value of ! can have a large impact on displacement performance. However,

quantitatively determining the correct value of ! based on a desired physical process

is di�cult. It is quite easy to illustrate the sensitivity of displacement results on !

using the streamline method, because of its speed. Figure 5.8 illustrates the e�ect that

! has on recovery predictions for the numerical streamline method in heterogeneity
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dominated displacements.4 Figures 5.9 { 5.12 provide a visual comparison of solvent

pro�les at tD=0.5 for various values of !. For all cases, as ! increases, breakthrough

time increases. In general, recovery also increases as ! increases. This behavior can be

explained by studying the limiting cases of !. When !=0, the displacement contains

a long rarefaction wave with no displacement front, resulting in very poor recovery

e�ciency at the gridblock scale. In the limit of !=1, a sharp displacement front is

preserved and local recovery e�ciency is very high for invaded gridblocks. However,

overall recovery is now also a function of heterogeneity and the total mobility �eld.

For homogeneous media, as expected, recovery is highest at ! = 1. As heterogeneity

begins to dominate, there is competition between e�ciently displacing 
uid from high


ow channels versus cross-
ow into low permeability regions. Thus, ! = 1 may not

always result in the highest recovery as heterogeneity becomes more dominant.

ECLIPSE results for ! = 1 are also included for each permeability �eld. Each

ECLIPSE run required 150 times more CPU than the equivalent streamline run.

Using ECLIPSE for this type of sensitivity study on ! would require an impractical

amount of CPU time. Comparing streamline results with ECLIPSE results (Fig. 5.8)

indicates that there is no unique value of ! in the streamline method that can be

used to obtain agreement with ECLIPSE. Within ECLIPSE numerical di�usion has

a strong in
uence on the properties of the solution. The ! parameter in the streamline

method has a linear scaling e�ect on recovery and cannot be expected to replicate

the di�usion e�ects in ECLIPSE. Agreement may be improved by including physical

di�usion in the streamline model as outlined by Blunt et al. [10].

As discussed in Chapter 4, Thiele [68] noted for heterogeneity dominated systems

that ! determined by Koval's model gave good agreement with conventional methods

when mapping analytical solutions to streamlines. Koval's model captured viscous

�ngering e�ects in an average sense along each streamline. However, mapping nu-

merical solutions along streamlines captures viscous �ngering e�ects explicitly, as was

shown in the previous section. For all displacements in this thesis, sub-gridblock scale

4Heterogeneity is characterized using the heterogeneity index, HI = �2
ln k�c, as de�ned by Gelhar

& Axness [31].
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Figure 5.8: E�ect of ! on streamline FCM recoveries for di�erent levels of hetero-
geneity (isotropic and anisotropic).

heterogeneities are unknown and assumed not to exist. As a result, the most appro-

priate value for the mixing parameter, when mapping numerical solutions, is !=1.

However, for comparisons between 3DSL and ECLIPSE, Fig. 5.8 suggests that a value

of 0:7 < ! < 1:0 within the streamline method will result in some agreement between

the two methods, but the exact value is dependent on the level of heterogenity.
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Figure 5.9: Comparison of saturation pro�les in a heterogeneous FCM displacement
for di�erent values of !, HI=0.1, isotropic media.
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Figure 5.10: Comparison of saturation pro�les in a heterogeneous FCM displacement
for di�erent values of !, HI=0.5, isotropic media.
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HI=0.11 - Anisotropic - tD=0.5
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Figure 5.11: Comparison of saturation pro�les in a heterogeneous FCM displacement
for di�erent values of !, HI=0.1, anisotropic media.
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Figure 5.12: Comparison of saturation pro�les in a heterogeneous FCM displacement
for di�erent values of !, HI=0.52, anisotropic media.
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5.8.3 3D Displacements

The three 50�50�20 permeability �elds shown in Fig. 4.13 are again used here. For

comparison with the results of Section 4.12.3, well and 
uid properties as well as the

number of time steps remain the same. The well geometry is a 5-spot pattern with

a producer in the upper 10 gridblocks of each corner and an injector in the lower 10

central gridblocks. The 
uid viscosity ratio is �o=�w=10. For both ECLIPSE and

the numerical streamline method, a value of !=1 is the most appropriate value since

it is assumed that sub-gridblock scale heterogeneities do not exist. Additionally, to

compare results here with those in Section 4.12.3, Koval's model giving ! = 0:725

will also be used for the streamline results.

A comparison of results between the streamline method (! = 0:725) and ECLIPSE

- IMPLICIT two-point upstream method (! = 1:0) for each permeability model are

shown in Fig. 5.13. Individual well GOR responses agree well. Again, the mixing

due to remapping back to the underlying saturation grid gives improved total �eld

recovery matches, as compared to the match in Fig. 4.18 generated using the analytical

mapping method of Chapter 4.

A second set of displacements was performed on the same three models using the

streamline method, but now with !=1. The results between the streamline model and

ECLIPSE (!=1) are shown in Fig. 5.14. Again individual well GOR responses agree

well between the two methods, however, the streamline recoveries are consistently

higher than the ECLIPSE recoveries. Reducing mixing of the displacement front

in the streamline method has resulted in improved recoveries. On the other hand,

the greater amount of numerical di�usion within ECLIPSE tends to underestimate

recovery.

5.9 Field Applications

Mapping numerical solutions along streamlines has only marginally reduced the speed

of the method. However, the requirement of uniform initial conditions has been

removed. The streamline method is now capable of modeling in�ll drilling situations,



5.9. FIELD APPLICATIONS 103

0.0

0.2

0.4

0.6

0.8

1.0

D
im

en
si

on
le

ss
 R

ec
ov

er
y,

 N
P

D

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

 

3DSL - ω=0.725
ECLIPSE - IMPLICIT - 2PU - ω=1

model 1

model 2

model 3

10-1

1

10

G
O

R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

50X50X20 - 5SPOT FCM FLOOD - Model 1

3DSL - ω=0.725
ECLIPSE - IMPLICIT - 2PU - ω=1

ON-TREND PRODUCERS

OFF-TREND PRODUCERS

10-1

1

10

G
O

R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

50X50X20 - 5SPOT FCM FLOOD - Model 2

3DSL - ω=0.725
ECLIPSE - IMPLICIT - 2PU - ω=1

10-1

1

10

G
O

R

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Dimensionless Time, tD

50X50X20 - 5SPOT FCM - Model 3

3DSL - ω=0.725
ECLIPSE - IMPLICIT - 2PU - ω=1

Figure 5.13: Comparison of recovery and individual producer GOR's between 3DSL
!=0.725 (numerical) and ECLIPSE - IMPLICIT !=1, for three di�erent permeability
models.

Model 3DSL ECLIPSE - implicit
CPU Time Pressure CPU Time Matrix Speed-up
(min) Steps Solves (min) Steps Solves Factors

1 58 50 50 3980 326 1327 69
2 43 50 50 2361 336 860 55
3 55 50 50 4370 362 1085 80

Table 5.2: Comparison of simulator performance parameters between the streamline
method (numerical) and ECLIPSE for 3 di�erent FCM 5-spot models.
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Figure 5.14: Comparison of recovery and individual producer GOR's between 3DSL
!=1 (numerical) and ECLIPSE - IMPLICIT !=1, for three di�erent permeability
models.

producer/injector conversions, and �elds with water/oil or gas/oil contacts.

5.9.1 Screening Multiple Images

Even when mapping numerical solutions, the streamline method is still orders

of magnitude faster than conventional methods. The speed of the method makes

it ideally suited to evaluating reservoir uncertainty. The thirty permeability �elds

studied in Section 4.16.2 under water
ood production are again used here. In this

case, numerical rather than analytical solutions are mapped to the streamlines. On
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Figure 5.15: Water
ood recovery for 30 equiprobable realizations as predicted by
the streamline method. ECLIPSE results are only shown for the permeability �elds
resulting in the high and low recoveries as predicted by the streamline method.

average, each 100,000 gridblock model required 2.3 hours CPU time.5 It was also

observed that the permeability �elds predicted to give the high and low recoveries

using the analytical streamline method were the same �elds predicted using the nu-

merical method. In fact, the ranking of all 30 permeability �elds predicted by the

two streamline methods did not change. Figure 5.15 is a summary of the recovery

curves for the 30 realizations generated using the numerical streamline method. Note

that the ECLIPSE results no longer appear to be shifted up relative to the streamline

results, as was seen in Fig. 4.28. The improved agreement is a result of the mixing

now present in the streamline method when mapping numerical solutions.

5.9.2 Field Scale In�ll Drilling

As an example of the 
exibility of the streamline method, a �eld scale well conversion

problem is studied. A 1.16 million gridblock model (220�220�24) permeability �eld

5When mapping analytical solutions, each streamline model required an average CPU time of 1.5
hours.
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Repeated line-drive patternRepeated 5-spot pattern

Figure 5.16: Well patterns for in�ll drilling water
ood example.

was generated using sequential Gaussian simulation. The permeability correlation

lengths are �c=0.25 in the on-trend direction, �c=0.03 in the o�-trend direction, and

�c=0.17 in the vertical direction. This �ne scale permeability �eld was run directly

with 3DSL.

Initially, the �eld is completed in repeated �ve-spot patterns, as shown in Fig. 5.16.

Figure 5.17 is an areal view of the water
ood at tD=1.0. Due to the diagonal ori-

entation of the permeability �eld, the sweep e�ciency is quite poor. Realistically,

this type of sweep pattern can occur in water
oods where injection pressures exceed

fracture pressure. A preferential fracture orientation results in a fracture induced

permeability anisotropy. The solution to the poor sweep e�ciency is to convert the

patterns to line-drive by converting the watered out producers to injectors and in�ll

drilling additional producers (Fig. 5.16). Due to the changing well boundary con-

ditions and the nonuniform water saturation now present, this problem can only be

modeled by mapping numerical solutions along streamlines. Figure 5.18 is an areal

view of the line-drive water
ood at tD=1.0 assuming that the pattern conversions



5.9. FIELD APPLICATIONS 107

 

 

 

Figure 5.17: Areal averaged water
ood map for a 220�220�24 repeated 5-spot wa-
ter
ood pattern at tD=1.0, as predicted by the streamline method.

occurred at tD=0.4. There is considerably improved sweep in Fig. 5.18 over that in

Fig. 5.17.

The �ne scale model was run using 3DSL and required 50 hours for the base

case recovery curve, and 40 hours for the incremental results. The base case and

incremental recovery due to the pattern modi�cations are shown in Fig. 5.19. The

million gridblock model could not be run with ECLIPSE using available computer

resources. To compare with ECLIPSE, the model was upscaled by a factor of 16 to

72,000 gridblocks (110�110�6) using geometric averaging of absolute permeability.

Relative permeabilities were not altered for the coarse scale model. The oil recov-

ery results for ECLIPSE-IMPES are also shown in Fig. 5.19. For this model, the

ECLIPSE base case recovery curve required 55 hours run time, while the incremental

results required 13 hours run time. An ECLIPSE fully implicit solution for the base

case model required 120 hours run time. The large run time was due to time step

convergence problems for this size model. Included for reference are 3DSL upscaled

results, which required 28 minutes run time for the base case and 22 minutes run
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Figure 5.18: Areal averaged water
ood map for a 220�220�24 repeated line-drive
water
ood pattern at tD=1.0, as predicted by the streamline method.

time for the incremental case. The upscaled streamline results agree very well with

the upscale ECLIPSE results, but were generated 300 times faster.

As seen in Fig. 5.19, incremental oil recovery due to in�ll drilling is underesti-

mated in the upscaled models. This is because upscaling leads to a higher prediction

of oil recovery for the base case 5-spot model than for the line-drive model. The rea-

son upscaling does not a�ect each model the same is that the interwell permeability

correlation lengths are 50% smaller in the line-drive pattern model than the 5-spot

pattern model. This comparison highlights two points: (1) the ECLIPSE base case

model was 16 times smaller than the 3DSL model, yet both required approximately

the same run time; (2) ignoring �ne-scale heterogeneity can lead to an overly opti-

mistic prediction of �eld performance. The streamline model is a new tool that can

capture increased reservoir heterogeneity in �eld scale multiwell models.
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Figure 5.19: Water
ood oil recovery comparisons between 3DSL million gridblock
model and upscaled ECLIPSE - IMPES and 3DSL models.

5.10 Chapter Summary

This chapter demonstrates that mapping numerical solutions to streamlines extends

the method to account for the more general situations present in �eld scale simula-

tions. For example, changing well conditions or nonuniform initial 
uid saturations

can now be modeled. However, the large speedup factors of the method are still re-

tained even with the added expense of evaluating numerical, rather than analytical

solutions. As Section 5.4 emphasized, the maximum time step size in conventional

IMPES methods is governed by the grid stability constraint (a global CFL condition).

However, with the streamline method, the convection equation is e�ectively decou-

pled from the underlying grid. Therefore, grid stability constraints are also decoupled

from the solution to the convection equation. This decoupling allows for very large

time step sizes between convective steps and pressure solves in the streamline method.

This chapter also showed that mixing between streamlines at the gridblock scale

now occurs each time the streamlines are mapped to the underlying grid. The mixing

is a result of only knowing gridblock saturations to within a single gridblock scale.
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The mixing improved the agreement between the streamline method and ECLIPSE

for water
ood displacements, though it is quite possible that the level of mixing

present in the numerical solutions is still larger than the physical mixing that occurs

in �eld scale displacements. In any case, the streamline method is no less accurate

than conventional �nite-di�erence methods. However, it is much faster.

For �rst-contact miscible displacements, agreement between the streamline method

and ECLIPSE varied depending on the level of heterogeneity. The di�erence was

mainly due to the magnitude of numerical di�usion within ECLIPSE, which is not

present in the streamline results. It was also shown that adjusting the mixing param-

eter ! in the streamline method, may replicate the numerical di�usion in ECLIPSE

and produce good agreement between the two methods.

In Chapter 4, the assumption that 
ow was dominated by heterogeneity was re-

quired to preserve the uniform initial conditions along recalculated streamline paths.

In this chapter, this assumption has been eliminated. Displacements controlled by


uid mobility can also be modeled, as was illustrated by the viscous �ngering exam-

ples.



Chapter 6

Gravity Results With 1D

Numerical Solutions

6.1 Introduction

The in
uences of gravity e�ects on displacements are well known. For miscible dis-

placements, Stalkup [65] notes that gravity segregation of 
uids can result in reduced

recoveries, while Whillhite [79] noted similar e�ects in immiscible displacements.

Clearly, to extend the streamline method to three-dimensional �eld scale displace-

ments the method must be able to account for gravity. In fact, Tchelepi & Orr [67]

noted accounting for gravity is more important in three-dimensional displacements

than in two-dimensional displacements.

This chapter describes how gravity e�ects are accounted for in single and mul-

tiphase 3D displacements with the streamline method. To account for multiphase

gravity e�ects, one possibility is to trace general phase streamlines, as discussed by

Blunt et al.[10]. A second choice is to continue to trace a single set of streamlines

along the total velocity vector and then use an operator splitting method to cor-

rect for multiphase gravity e�ects. A similar operator splitting method applied to

front-tracking is used by Bratvedt et al. [14]

Historically, streamline methods have been unable to account for gravity e�ects.

This is a result of mapping analytical solutions along streamlines which implies that

111
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the 
uid path follows the streamline path. However with gravity, a 
uid pathline

is di�erent than a 
uid streamline.1 The 
uid pathline can be properly modeled by

mapping numerical solutions along streamlines and updating the streamline paths pe-

riodically. In the case of multiphase 
ow, an explicit gravity step (operator splitting)

is also added.

6.2 De�nition of Gravity Number

The magnitude of the gravity forces in a displacement are characterized by the time

required for 
uids to move up or down versus the time required for 
uids to move

across a domain. Using Darcy's law to determine the travel times, a dimensionless

gravity number is de�ned as [4] [67],

Ng =
Kv��gL

2

Kh(�Ph)H
; (6.1)

where Kv and Kh are average vertical and horizontal permeabilities respectively, ��

is the 
uid density di�erence, �Ph is the pressure drop in the horizontal direction, L

is the distance between wells, and H is the model height. Thus, as density di�erences

or model length increase, the gravity number increases, while if model height or

horizontal 
ow rate increase (horizontal pressure drop increases), the gravity number

decreases.

The above de�nition of Ng in Eq. 6.1 is rigorous only for strictly two-dimensional

homogeneous permeability �elds. For more complex displacements, all the parameters

in Eq. 6.1 can vary in space, and the pressure drop can vary in time due to changes

in the mobility �eld. Thus, a single value of Ng cannot characterize a displacement.

However, since the interest is in relative comparisons ofNg for di�erent displacements,

an average value of Ng will be consistently applied and quoted. Thus, �Ph will be the

average pressure drop between an injector and surrounding producers, throughout the

displacement life. For simple 2D models Kv and Kh were determined from pressure

solves using constant pressure and no-
ow boundary conditions in each coordinate

1A 
uid pathline represent the locus of a particle's position in space through time [8].
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direction. For 3D permeability �elds with general well locations it is di�cult to de�ne

a related Kv=Kh ratio. Instead, for 3D cases it is assumed that Kv=Kh is equivalent

to the square root of the variogram anisotropy ratio used to construct a permeability

�eld. Wen [78] found that this method of approximating Kv=Kh is satisfactory for

�c < 0:2.

6.3 First Contact Miscible Displacements

For FCM displacements when the Todd & Longsta� mixing parameter is ! = 1, the


uids are completely mixed at the gridblock scale and have identical properties. As

a result, there is no density di�erence within a given gridblock and the last term in

Eq. 3.36 becomes Gj = 0. The phase velocity and the total velocity are aligned at all

times and gravity e�ects are accounted for in equation Eq. 3.7 only.

Figure 6.1 is an illustration of an FCM gravity dominated displacement in a ho-

mogeneous cross-section. The 
uid mobility ratio is 10 and Ng = 40. The streamlines

that 
uids are moved along for a given time step have been overlaid on the resulting

saturation pro�le. Based on solving Eq. 3.7, and tracing the subsequent velocity �eld,

the streamlines paths rise where they contain \light" 
uid and sink again where they

contain \heavy" 
uid.

Every gridblock in the domain must contain a streamline. The complication

of gravity is that some gridblocks will contain circulation streamlines, rather than

streamlines passing from injectors to producers. As gravity forces are increased, this

occurs in a greater percentage of gridblocks. When mapping analytical solutions to

the streamlines, circulation cells cannot be properly modeled. Thus, only low grav-

ity numbers or displacements dominated by heterogeneity can be modeled (Blunt et

al. [10]). However, with the numerical mapping technique of this chapter, mapping a

numerical solution along a circulation cell is no more di�cult than mapping a solution

along a streamline that passes from an injector to producer.
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Figure 6.1: FCM gravity dominated displacement in homogeneous cross-section.

6.3.1 2D Displacements

In this section, careful comparisons of 2D gravity dominated FCM displacements are

considered. The 125�50 permeability �eld used in this study is shown in Fig. 6.2. To

emphasize the e�ects of gravity as Ng increases, rather than have full cross-section

completions, the injection well is located in the lower left 10 gridblocks of the model,

while the production well is located in the lower right 10 gridblocks. The 
uid viscosity

ratio is �o=�g=10 and !=1. Fluid densities were changed to alter the gravity number

for successive runs. All streamline results presented in this section are converged

solutions. Sensitivity of convergence due to gravity e�ects is summarized in Section

6.5.

A comparison of solvent pro�les between ECLIPSE - IMPES and 3DSL are shown

in Figs. 6.3, 6.4, and 6.5. Clearly the numerical streamline method can model gravity

dominated displacements as can be seen by the increased amount of solvent rising in

the model as the gravity number is increased. In comparison with the ECLIPSE

results, the pro�les appear to be similar although there is more detail in the 3DSL

results. It is also worth noting that because of greater numerical di�usion, ECLIPSE

predicts earlier breakthrough for the Ng=0 case.

A summary of the oil recovery curves for each method and gravity number are

shown in Fig. 6.6. In general, ECLIPSE tends to under-predict recovery compared

with the streamline method. The increased amount of numerical di�usion within

ECLIPSE results in more mixing of the solvent and the oil which in turn reduces the
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Figure 6.2: 125�50 heterogeneous permeability �eld, �c=0.4, �
2
ln = 0:83, HI=0.332.

3DSL ECLIPSE - IMPES
Ng Cpu Pressure CPU Time Speed-up

(min) Solves (min) Steps Factor
0 2.2 50 616 1742 280
2 4.5 122 2268 8641 504
10 10.3 306 9010 32767 875

Table 6.1: Comparison of simulator performance parameters between the streamline
method and ECLIPSE for 2D model at three di�erent gravity numbers.
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Figure 6.3: FCM displacement comparisons between 3DSL and ECLIPSE - IMPES.
125�50 domain, Ng=0, injection is into the lower left 10 gridblocks and production
is from the lower right 10 gridblocks.
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Figure 6.4: FCM displacement comparisons between 3DSL and ECLIPSE - IMPES.
125�50 domain, Ng=2, injection is into the lower left 10 gridblocks and production
is from the lower right 10 gridblocks.
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Figure 6.5: FCM displacement comparisons between 3DSL and ECLIPSE - IMPES.
125�50 domain, Ng=10, injection is into the lower left 10 gridblocks and production
is from the lower right 10 gridblocks.
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Figure 6.6: FCM recovery comparisons between 3DSL and ECLIPSE - IMPES.

e�ective density between the two 
uids. Thus, the ability of the solvent to rise up

and displace oil is reduced.

The power of the streamline method in this case is that it gives more accurate an-

swers and does so in a fraction of the time compared to conventional results. Stream-

line simulator performance compared with ECLIPSE is summarized in Table 6.1.

Note that although the streamline method required additional pressure solves to

reach a converged solution as gravity e�ects were increased, speed-up factors over

ECLIPSE still increased. Running on a standard UNIX workstation, ECLIPSE re-

sults for this small problem with Ng=10 required over 32,000 time steps and 6 days

of CPU time to reach tD=2. Whereas, the streamline method only required 306 time

steps and 10 minutes of CPU time. This translates into a speed-up factor of 875. For

the Ng=2 problem, the speed-up factor was 504. For Ng=0, the speed-up factor was

280. Although not shown here, ECLIPSE fully implicit results were also calculated

at the three gravity numbers. CPU usage was reduced, however the fully implicit

results su�ered from considerable amounts of numerical di�usion and showed even

poorer agreement with the streamline solutions.
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6.3.2 3D Displacements

Three dimensional FCM gravity dominated displacements are very di�cult and CPU

intensive to perform. Recent notable works include Christie et al. [21] and Tchelepi

& Orr [67]. Tchelepi & Orr studied 2D and 3D FCM displacements and noted that

3D 
ows were always more a�ected by buoyancy di�erences than were 2D 
ows. This

is due to additional pathways for 
uid to move vertically in 3D compared with 2D.

As a 3D example, consider a 50,000 gridblock (50�50�20) FCM displacement with

and without gravity. An injection well is located in the top two central gridblocks, and

a production well is located in the lower two gridblocks of the model in each corner.

With this well con�guration, gravity e�ects should improve recovery by improving

vertical conformance. The solvent distributions for Ng=0 and Ng=0.1 are shown in

Fig. 6.7 at tD=0.52. Figure 6.8 clearly shows that adding gravity to this 3D model

increases the amount of solvent in the top of the model and results in a large impact

on oil recovery e�ciency. Each streamline model required 2 CPU hours, translating

to approximately 50 days for each ECLIPSE result if they were obtained using our

current computer resources.

6.4 Two-Phase Immiscible Displacements

Multiphase gravity e�ects are particularly di�cult to model using streamline methods

since the gravity vector in Eq. 3.13 is seldom aligned with a streamline trajectory. For

practical reservoir �eld simulations, it is important to account for multiphase gravity

e�ects. To solve,

@Sj
@t

+
@fj
@�

+
r � ~Gj

�
=
qsfj;s
�

; (6.2)

the equation is split into two parts based on operator splitting. Bratvedt et al. [14]

presented a similar operator splitting technique applied to front tracking along stream-

lines. The convective portion of Eq. 3.13 has already been solved and is,

@Sc
j

@t
+
@fj
@�

=
qsfj;s
�

; (6.3)
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Ng=0.1

Ng=0.0

Figure 6.7: Solvent distribution in a heterogeneous media at tD=0.52, without gravity
and with gravity, as predicted by the streamline model. An injection well is located
in the top two gridblocks in the model center, production wells are located in the
lower two gridblocks in each corner of the model.



122 CHAPTER 6. GRAVITY RESULTS WITH 1D NUMERICAL SOLUTIONS

0.0

0.2

0.4

0.6

0.8

1.0
D

im
en

si
on

le
ss

 R
ec

ov
er

y,
 N

P
D

0.0 0.5 1.0 1.5 2.0
Dimensionless Time, tD

50X50X20 FCM RECOVERY

3DSL - NG=0
3DSL - NG=0.1

Figure 6.8: FCM displacement recovery comparison results from 3DSL for a 3D model
with two di�erent gravity numbers.

where Sc
j is a temporary saturation distribution at the end of the convective step.

The gravity portion of Eq. 6.2 is the one dimensional equation,

@Sj
@t

+
r � ~Gj

�
= 0; (6.4)

solved along gravity lines oriented along the ~g vector. The initial condition to Eq. 6.4

is Sc
j determined at the end of the convective step. For simplicity the Cartesian grid

is assumed to be horizontal with the z axis aligned along ~g. Thus Eq. 6.5 becomes,

@Sj
@t

+
1

�

@Gj

@z
= 0; (6.5)

and is a 1D �rst-order hyperbolic PDE. The advantage of decoupling Eq. 3.13 in this

way is that Eq. 6.5 is only solved in 
ow regions where gravity e�ects are important.

For example, in locations where 
uids are already completely segregated Gj becomes

zero, as discussed in the next section, and Eq. 6.5 will not be solved.
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Figure 6.9: A 1D vertical discretization of an oil/water problem.

6.4.1 Numerical Solution along Gravity Lines

The numerical solution to Eq. 6.5 is similar to the method outlined in Section 5.5.

The discretization in space and time of Eq. 6.5 is given by,

Sn+1
i = Sn

i �
�tg
�i�zi

(Gi+ 1

2

�Gi+ 1

2

); (6.6)

for node i, where G is de�ned in Eq. 3.11, and �tg is the local time step size along

a gravity line. Sammon [63] and Brenier & Ja�re [15] point out that the upstream

direction at which to evaluate G is 
uid dependent and is based on the 
ow direction.

Consider Fig. 6.9 with three nodes of a vertical two-phase oil/water system where oil

is less dense than water. The proper discretization of Eq. 3.11 about Gi+ 1

2

becomes,

Gi+ 1

2

=
(Kz;i+1kro;i+1)(Kz;ikrw;i)(�w � �o)g

(�wKz;i+1kro;i+1) + (�oKz;ikrw;i)
: (6.7)

Note that the water properties are evaluated at the ith node while the oil properties

are evaluated at the i + 1 node. A similar equation is written for Gi� 1

2

. The above
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equation can easily be rewritten for gas/oil systems where the gas properties are now

determined at the i+1 node, while the oil properties are determined at the ith node.

For the case where gravity segregation has already occurred such that Sw;i =

Sw;connate and Sw;i+1 = 1�So;residual, Eq. 6.7 becomes Gi+ 1

2

= 0. As expected, no 
ow

occurs at the i+ 1

2
interface.

6.4.2 Time Stepping

The time stepping method is identical to that outlined in Section 5.4. Following the

convective step taken along all streamlines, an updated saturation map exists (Sc
j),

after which the following steps are appended:

6. If Gj 6= 0, include a gravity step that traces gravity lines from the top of the

domain to the bottom of the domain along ~g. For each gravity line do the

following:

(a) While tracing a gravity line, pick up the saturation distribution as a func-

tion of z calculated in the convective step.

(b) Pass the saturation pro�le into a 1D numerical solver and move the sat-

urations forward by �tn+1p by solving Eq. 6.5. Map the new saturation

pro�le back to the original gravity line.

7. If Gi 6= 0 average all gravity line properties within each gridblock to determine

the �nal saturation distribution at tn+1.

8. Return to Step 1 of Section 5.4.

6.4.3 2D Comparisons

In this section, careful 2D comparisons of gravity dominated water
ood displacements

are considered. The permeability �eld shown in Fig. 6.10 is 250�75, and contains

permeabilities that range over three-orders of magnitude. The 
uid viscosity ratio

is �o=�w=15. The oil and water densities were held constant but injection 
ow rate
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Figure 6.10: A 250�75 heterogeneous permeability �eld, �c;x=0.14 �c;z=0.47, �
2
ln =

1:47, HI=0.21.

was varied to alter the gravity number. To magnify the e�ects of gravity, rather

than model full interval completions, the injector was completed in the upper left

10 gridblocks of the model, while the producer was completed in the upper right 10

gridblocks of the model.

A comparison of saturation pro�les between 3DSL and ECLIPSE - IMPES are

shown in Figs 6.11, 6.12, and 6.13, for Ng=0, Ng=0.4, and Ng=10 respectively.

Clearly, the new streamline method can account for gravity e�ects in two-phase 
ow

as noted by the increased amount of water sinking in the model as gravity forces

are increased. The streamline results show greater detail and less numerical di�usion

than the ECLIPSE results, which would explain the slight di�erence in recoveries

predicted by the two methods (Fig. 6.14).

Aside from reduced numerical artifact, a second important di�erence between the

two methods is the speed-up factors. Compared with FCM displacements, ECLIPSE

is much faster for two-phase immiscible 
ow calculations. Primarily, it is a result of

not requiring ECLIPSE to use the two-point upstream method as was needed for FCM

displacements. However, the streamline method is still faster and more accurate than

ECLIPSE. For this model, the speedup factor for Ng=0 was 11, for Ng=0.4 was 4, and

Ng=10 was 3. A summary of run performance parameters is shown in 6.2. For the

water
ood example the speed-up factors decreased as gravity forces increased. This

occurs because a large percentage of CPU time is now required in the 1D gravity
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Figure 6.11: Water saturation comparisons between the streamline method and
ECLIPSE - IMPES in a 250�75 heterogeneous domain for Ng=0. Water injection is
in the upper 10 left gridblocks and production is from the upper 10 right gridblocks.



6.4. TWO-PHASE IMMISCIBLE DISPLACEMENTS 127

3DSL ECLIPSE - IMPES

 

 

tD=0.2

 

 

tD=0.4

 

 

tD=0.6

 

 

tD=0.8

 

 

tD=1.0

 

 

tD=0.2

 

 

tD=0.4

 

 

tD=0.6

 

 

tD=0.8

 

 

tD=1.0

Figure 6.12: Water saturation comparisons between the streamline method and
ECLIPSE - IMPES in a 250�75 heterogeneous domain for Ng=0.4. Water injec-
tion is in the upper 10 left gridblocks and production is from the upper 10 right
gridblocks.
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Figure 6.13: Water saturation comparisons between the streamline method and
ECLIPSE - IMPES in a 250�75 heterogeneous domain for Ng=10. Water injec-
tion is in the upper 10 left gridblocks and production is from the upper 10 right
gridblocks.
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Figure 6.14: Comparison of water
ood recovery predictions in a 250�75 heteroge-
neous media for three di�erent gravity numbers

solver. As Ng increases the streamline simulator behaves more like a conventional

method moving 
uid vertically rather than moving 
uid along streamlines.

6.4.4 3D Comparisons

In this section, a 100,000 gridblock (100�100�10) water
ood model with and without

gravity is considered. An injection well is located in the lower two central gridblocks,

and a production well is located in the upper two gridblocks of the model in each

corner. The water saturation pro�le predicted by the streamline method is shown

in Fig. 6.15 at tD=0.5 for Ng=0 and Ng=1.0 (�o=�w=10). For this model gravity

has the bene�cial e�ect of improving the vertical conformance of the water front.

With this large two-phase model it is possible to compare the streamline results

against ECLIPSE in an acceptable amount of run time. The corresponding water

saturation pro�les for ECLIPSE are shown in Fig. 6.16. These pro�les are similar

to the streamline results in Fig. 6.15. Figure 6.17 is a comparison of oil recovery

predicted by the two methods showing good agreement forNg=0, but some di�erences



130 CHAPTER 6. GRAVITY RESULTS WITH 1D NUMERICAL SOLUTIONS

3DSL ECLIPSE - IMPES
Ng CPU Pressure CPU Time Speed-up

(min) Solves (min) Steps Factor
0 14 40 149 2890 11
0.4 27 40 106 2013 4
10 263 1479 777 10651 3

Table 6.2: Comparison of simulator performance parameters between the streamline
method (numerical) and ECLIPSE - IMPES for a 2D model.

for Ng=1.0. Again, changing the gravity number by a small amount can have a large

e�ect on displacement performance in 3D. Although the location of oil recovery is

signi�cantly di�erent with and without gravity, the impact on the recovery curve is

not as pronounced for this water
ood as was the case for the FCM displacement of

the previous section.

Recall that the speed-up factors for the small 2D model of the previous section

were 10 or less. For this larger 100,000 gridblock model the streamline model required

50 minutes run time for Ng=0, while the equivalent ECLIPSE IMPES model required

101 hours run time { a speedup factor of 120. For the case Ng=1.0, the streamline

model required 5.4 hours run time (100 pressure solves), while the ECLIPSE IMPES

model required 297 hours run time (60,000 time steps) { a speedup factor of 55.

This latter speed-up factor is largely in
uenced by ine�ciencies in the 3DSL pressure

solver.

For the Ng=1.0 case, using the default IMPES settings in ECLIPSE decreased the

run time to 134 hours, but also resulted in an inaccurate solution. Several gridblocks

containing negative saturations as high as -20% were observed. This indicated stabil-

ity problems in the IMPES method. For the �nal run shown, the maximum time step

size was a factor of 4 times smaller than the default size in order to avoid stability

problems.



6.4. TWO-PHASE IMMISCIBLE DISPLACEMENTS 131

Figure 6.15: Water saturation distribution at tD=0.6 in a 5-spot pattern as predicted
by the streamline method for two di�erent gravity numbers.
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Figure 6.16: Water saturation distribution at tD=0.6 in a 5-spot pattern as predicted
by ECLIPSE - IMPES for two di�erent gravity numbers.



6.5. CONVERGENCE 133

0.0

0.2

0.4

0.6

0.8

D
im

en
si

on
le

ss
 R

ec
ov

er
y,

 N
P

D

0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless Time, tD

3D Waterflood Recovery Comparisons

3DSL
ECLIPSE IMPES

Ng=0

Ng=1.0

Figure 6.17: Water
ood displacement recovery comparison between the streamline
method and ECLIPSE - IMPES for two di�erent gravity numbers in a 100�100�10
gridblock model.

6.5 Convergence

The streamline method is an IMPES method, in that 
uid saturations are moved

forward in time based on the current velocity �eld (streamline paths). Because 
uid

movement is decoupled from the underlying grid, the streamline method is stable

for any size time step between pressure solves (�tp). However, there is a maximum

size for �tp, and it is dependent on how often the pressure �eld requires updating

to capture nonlinearities accurately in the pressure solution due to changes in the

total mobility ratio and gravity terms. These nonlinearities are a further function of

the displacement type, the level of heterogeneity, and the 
uid viscosity ratio. A dis-

placement is considered converged when further reduction in �tp yields no additional

changes in the recovery curve for a given displacement.

Recall that when mapping analytical solutions to streamlines, convergence was

only valid for 
ow dominated by heterogeneity (Section 4.13). In the numerical

method, because 
uid saturations are moved forward explicitly at each time step,
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Figure 6.18: E�ect of time step size on solvent pro�le for a gravity dominated FCM
displacement in a homogeneous cross-section.

the converged solution is physically realistic and valid for any level of heterogeneity.

6.5.1 E�ects due to Gravity

Gravity is an additional nonlinearity that alters the pressure �eld through time, and

hence, the streamline paths. Figure 6.18 illustrates the e�ect of taking too large

a time step between pressure solves. \Light" injected 
uid will be moved along a

downward portion of a streamline resulting in the swirl e�ect seen at the interface

between the two 
uids. This e�ect is eliminated by increasing the number of pressure

solves over a given time interval (reducing �tp). Although the problem is magni�ed

in a homogeneous system, this simple example illustrates that the presence of gravity

does require additional pressure solves over a given time interval to reach a converged

solution.
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6.5.2 Convergence Based on Increasing Pressure Solves

Convergence of the 2D FCM displacements considered in Section 6.3.1 is shown in

Fig. 6.19. For each gravity number, a series of displacements were run over the �xed

total time of tD=2. Also for each gravity number, the time step size between con-

vective steps was held constant (�tc constant) but the number of pressure solves was

increased (�tp reduced). Holding the number of convective steps constant amounts to

�xing the number of remappings to the underlying grid, and thus the level of mixing

between streamlines. Based on Fig. 6.19, convergence results were assigned to Table

6.1. To summarize, as the gravity number changed from 0 to 2 to 10 the number

of pressure solves required to reach a converged solution changed from 100 to 100

to 250, respectively. Note that for Ng=10, although there is no change in predicted

recovery after 50 pressure solves, a swirl e�ect between the solvent and oil interface

was observed in the saturation pro�les for all but the 250 pressure solves case.

Similar numerical experiments were carried out for the 2D water
ood example

discussed in Section 6.4.3. As Ng changed from 0 to 0.4 to 10, the number of pressure

solves required for convergence increased from 40 to 40 to 1500. Again, for the

Ng=10 case there is little di�erence between recovery curves after 100 pressure solves.

Convergence was determined based on studying the associated saturation pro�les for

nonphysical features.

6.5.3 Convergence Based on Front Movement

Rather than having to run a displacement multiple times and analyze the recovery

curves and saturation pro�les for convergence, it would be useful to determine the

time step size between pressure solves (�tp) a priori. For an IMPES method, the

optimum time step size is such that the fastest front moves one gridblock per time

step. Unfortunately, in a conventional �nite-di�erence method, the maximum time

step size is typically based on constraints dictated by high 
ow rate gridblocks near

wells. Thus, as a displacement proceeds, front movement is considerably less than a

single gridblock per time step. However, with the streamline method the fastest front

can always be moved at a single gridblock per time step, regardless of the velocity
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constraints near wells. Moreover, with the streamline method, fronts can be moved

substantially further than a single gridblock per time step. Thus, the parameter of

interest is the maximum number of gridblocks that the leading front can move yet

still ensure convergence. This parameter remains a function of the nonlinearities in

the pressure �eld. But, the limiting case of moving the fastest front 1 gridblock per

time step will alway result in a converged solution. Smaller time steps simply result

in saturation changes at a sub-gridblock level only and cannot be required to improve

accuracy.

For the streamline method, a good estimate of the next time step size �tn+1p before

a pressure solve is required is based on,

�tn+1p =
�nmin

nblks;�nmin

MAXblks

Vblshock
; (6.8)

where �nmin is the minimum time-of-
ight for all streamlines reaching producers at the

nth time level that do not have 
uid breakthrough, nblks;�n
min

is the number of blocks

that the minimum time-of-
ight streamline passes through, MAXblks is the desired

maximum number of gridblocks the leading front can move per time step, and Vblshock

is the dimensionless Buckley-Leverett shock velocity for the displacement. Eq. 6.8

predicts that on average the maximum front speed obeys MAXblks. An additional

feature of the automatic time stepping using Eq. 6.8 is that �tp will begin to increase

after breakthrough.

Using Eq. 6.8, a sensitivity study on MAXblks was conducted for the three FCM

displacements of Section 6.3.1 (125�75 gridblocks). Maximum front movement was

varied between 1 and 20 gridblocks per time step. Recovery curves for the corre-

sponding Ng and MAXblks are shown in Fig. 6.21. Note for these comparisons a

single remapping to the underlying grid occurred after each pressure solve. Thus,

the number of remappings is no longer constant between runs. Based on Fig. 6.21,

as Ng changed from 0 to 0.4 to 10, the value of MAXblks was reduced from 5 to 2

to 1. As expected, for large gravity e�ects, front movement was reduced to a single

gridblock per time step. Moving a front any faster increases the possibility of moving

light 
uids on downward portions of streamlines, as discussed in Section 6.5.1.

A similar convergence study was conducted for the three water
ood displacements
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presented in Section 6.4.3 (250�75) gridblocks. Front movement was varied from 250

blocks per time step down to 15 blocks per time step for Ng=0 and Ng=0.4. Front

movement was varied from 25 blocks per time step down to 1 block per time step for

the Ng=10 case. Recovery curves for each case are summarized in Fig. 6.22. Based

on Fig. 6.22, as Ng changed from 0 to 0.4 to 10, the corresponding value of MAXblks

required for convergence changed from 25 to 31 to 2. MAXblks does not decrease

consistently as expected between Ng=0 and Ng=0.4. The addition of a small amount

of gravity alters the water path (see Fig. 6.11 versus Fig. 6.12) and must result in

a reduced �min for the breakthrough streamline. For the water
ood Ng=10 case a

converged solution was reached at 2 gridblocks per time step, rather than 1 as in the

FCM case. This is because there is now the operator splitting step that will adjust


uid positions after they are moved convectively along streamlines.

One key conclusion from this section is that the streamline method does exhibit

convergence as the maximum front speed is reduced to the limiting case. However,

for all but the gravity-dominated displacements, a front speed of one is not required.

Table 6.3 summarizes the maximum number of gridblocks that a front must move

in the 2D FCM displacements to result in a converged solution with the streamline

method for each gravity number and the associated number of time steps. Also in-

cluded are results from ECLIPSE { IMPES. A similar summary for the 2D water
ood

displacements are shown in Table 6.4. For the streamline method, Tables 6.3 and 6.4

show that the greater the nonlinearity in the pressure �eld, the shorter distance that

fronts must be moved in order to properly honor the nonlinearity. Note that in all

cases, the maximum front speed within ECLIPSE was considerably less than 1 grid-

block per time step. These small front speeds are a direct result of the time step size

being dictated by global stability conditions in high 
ow rate gridblocks. Thus within

ECLIPSE, the pressure �eld is recalculated each time step based on front movement

at a sub-gridblock scale.
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3DSL ECLIPSE - IMPES
Ng Time Maximum Time Maximum

Steps Front Speed Steps Front Speed
0 48 5 1742 0.14
2 122 2 8641 0.03
10 306 1 32767 0.01

Table 6.3: Comparison of maximum front speeds (number of gridblocks per time
step) required for convergence using 3DSL, and associated front speeds for ECLIPSE
- IMPES, for 2D FCM model at three di�erent gravity numbers.

3DSL ECLIPSE - IMPES
Ng Time Maximum Time Maximum

Steps Front Speed Steps Front Speed
0 40 25 2890 0.35
0.4 40 31 2013 0.62
10 1479 2 10651 0.28

Table 6.4: Comparison of maximum front speeds (number of gridblocks per time
step) required for convergence using 3DSL, and associated front speeds for ECLIPSE
- IMPES, for 2D water
ood model at three di�erent gravity numbers.
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6.6 Chapter Summary

To model �eld scale displacements with the streamline model properly, gravity e�ects

must be accounted for. Previous streamline/streamtube methods could not account

for gravity e�ects since analytical solutions were mapped along streamlines. In this

manner, there was no mechanism to move 
uids along pathlines. However, by pick-

ing up the current saturations and moving them forward numerically along updated

streamlines, 
uid pathlines are honored. Gravity e�ects in FCM displacements could

successfully be modeled over a large range of gravity numbers. Two-phase grav-

ity problems are more di�cult to model with the streamline method. However, by

separating the governing equation into a convective step and a gravity step (operator-

splitting) the streamline method now accounts for gravity e�ects in multiphase 
ow.

In comparisons with conventional simulation methods, the streamline method still

retains orders-of-magnitude speed-ups and accuracy. The magnitude of the speed-up

depends on the size of the gravity number, the model size, and the type of displace-

ment process.

It was also shown that the streamline method converges as front movement is

reduced to the limiting case of one gridblock per time step. However, by decoupling


uid movement from the underlying grid, maximum front speeds of much greater than

one gridblock per time step were possible with the streamline method yet still resulted

in converged solutions. For gravity-dominated displacements, front movement on the

order of one gridblock per time step was required due to the additional nonlinearity

of the displacement. In comparison, it was illustrated that the maximum front speeds

in conventional IMPES methods are substantially less than one gridblock per time

step. This is because time step size is governed by the global grid CFL constraint,

which is typically de�ned by high 
ow velocities near wells.



Chapter 7

Recommendations

The streamline method has been extended to more general conditions by mapping one-

dimensional numerical solutions along streamlines. The physics of the displacement is

captured in the 1D solutions, while heterogeneity is captured by the streamline paths.

The extensions include an investigation of gravity, changing well conditions, and even

viscous �ngering. It is fair to say however, that a vast set of problems still exist

which conventional simulation methods can model that the current streamline method

cannot. These are potential areas of future research. A second area of research would

be based on applications that take advantage of the streamline simulator's speed. The

method provides a useful tool to study problems where a 
ow simulation is only one

component of a more complex modeling process such as, scale-up, history matching,

or ranking of multiple images.

1. Compositional Simulations

Compositional simulations with conventional methods have large CPU require-

ments, su�er from severe numerical di�usion and lack the large number of grid-

blocks necessary to represent heterogeneity adequately or resolve displacement

fronts between wells. Thiele et al. [71] mapped analytical compositional solu-

tions to streamlines and quoted speed-up factors of 4-5 orders of magnitude.

144
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A key result was that numerical di�usion in traditional methods almost com-

pletely eliminated mobility contrasts and gave overly optimistic recovery predic-

tions compared with the streamline results. Mapping numerical compositional

solutions to streamlines will introduced some numerical di�usion. However, as

has been shown for tracer and FCM displacements, the numerical artifact is

signi�cantly less than the levels present in conventional methods. The added

bene�t of a numerical method will be that compositions will be moved along

pathlines, more accurately capturing the nonlinearities in the solution.

Numerical compositional solutions can be mapped to streamlines in a very sim-

ilar manner as miscible and two-phase solutions were. To extend the current

method, the 1D solver will be modi�ed to account for phase behavior e�ects to

solve component conservation equations along streamlines.

2. Black Oil Simulations

Black oil simulations have not been investigated here, yet they are probably the

second most common type of displacement modeled after water
ooding. The

problem includes mass transfer between the oil and gas phase, compressibility

e�ects, and the presence of a water phase. To extend the streamline method

to this problem requires accounting for compressibility e�ects and three-phase


ow. Certainly, 1D solutions of black oil models can be solved, but a valid

question to ask is \What streamlines are the 1D solutions mapped along?" A

total velocity can still be de�ned, but there is the added complication of stream-

lines originating in arbitrary gridblocks due to compressibility e�ects. There are

also additional nonlinearities in the governing pressure equation since gridblock

GOR's and oil and gas formation volume factors are now functions of pres-

sure. Because of these nonlinearities, a greater number of pressure solves than

the number required for incompressible problems may be required to minimize

material balance errors.
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3. Additional Flow Mechanisms

The streamline method decouples each mechanism that in
uences 
ow, solving

them separately then combining the results. This decoupling is attractive be-

cause it can be easier to implement and solve many simple problems as opposed

to solving a single large problem at each time step. Gravity was treated as an

additional correction to the convective step along streamlines by operator split-

ting. The result was a gravity step along gravity lines. Additional processes

such as di�usion and capillary pressure can also be included in the streamline

method. Thiele et al. [70] present a method to account for longitudinal di�u-

sion by including a di�usion term in the 1D solution. Blunt et al. [10] present

a method to account for transverse di�usion which amounts to adding a ran-

dom component to the tracing of a streamline, an approach that is similar to

particle tracking methods. Capillary e�ects can be modeled in the main direc-

tion of 
ow by modifying the one dimensional solution. However accounting

for capillary e�ects in the transverse direction, which will typically have greater

saturation gradients, may prove to be more di�cult. A capillary step based on

operator splitting could be included similarly to the representation of gravity

e�ects, although the step will not be one-dimensional.

4. Mixing Due to Remapping

The new method of mapping numerical solutions to streamlines has overcome

many limitations of previous streamline methods. However discussed in Chap-

ter 4, there is now mixing present at a gridblock scale between streamlines. The

level of mixing is a function of the number of remappings taken during a simula-

tion and is a result of only knowing saturation information to a gridblock scale

detail. This work has not addressed how the mixing relates to a grid Peclet

number for instance, or how longitudinal and transverse mixing are a�ected by

the number of remappings.
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5. Volume Balance Errors

The remapping technique used in this work to assign gridblock average 
uid

properties did not guarantee volume conservation. A volume balance was per-

formed after each remapping step to determine the required time correction to

ensure conservation. An obvious improvement to the method would include a

more rigorous mapping method which correctly picks up all of the 
uid volume,

moves it forward, and then correctly remaps the volume to the underlying grid.

One possibility may be to store the saturation information on a �ner grid than

the grid on which the pressure �eld is solved.

6. Contaminant Migration

A body of problems in the groundwater area exist with modeling 
ow of contam-

inant in porous media. Contaminant transport problems are typically modeled

as single-phase 
ow, for which the streamline tracing is trivial. The di�culty

of contaminant transport problems is accounting for the many reactions, ad-

sorption and desorption of components that occur. Particle tracking methods

are typically used but are slow and prone to mass-balance errors. Again, the

streamline method is ideally suited to this class of problems because the 1D

numerical solutions solved along streamlines can be easily modi�ed to account

for additional contaminant e�ects.

7. Use as a Fast Flow Simulation Transfer Function

The speed of the streamline simulator makes it ideally suited to any process that

requires a fast 
ow simulator embedded in a modeling loop. Such problems arise

in automatic history matching, screening of geologic images, or estimating un-

certainty in 
ow simulations based on uncertainty in permeability distributions.

As this thesis demonstrates, the streamline simulator can solve million gridblock

models on standard sized workstations. The method provides an easy way to

increase resolution of heterogeneity by another order of magnitude. It would be

interesting to examine what level of detail in modeling heterogeneity is required

before no noticeable impact on recovery occurs.
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8. Improve Streamline Simulator E�ciency

The streamline simulator presented in this work (3DSL) is far from optimized.

One area of improvement is the iterative solver. Currently 3DSL uses pub-

lic domain solvers that are not speci�cally optimized for reservoir engineering

problems. For example, the matrix inversion routine in ECLIPSE is roughly

three times faster than that used in 3DSL.

A second area that could be improved is the streamline tracing. Tracing stream-

line paths and time stepping along streamlines could be done in parallel on a

shared memory machine.
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Conclusions

This work has presented an extension of previous streamline/streamtube methods to

multiwell �eld scale displacements. Such �eld scale phenomena as heterogeneity, grav-

ity, changing well conditions, and nonuniform initial conditions can now be modeled

with the new streamline method.

The basic idea of the streamline method consists of decoupling the full 3D prob-

lem into multiple 1D problems solved along streamlines. This decoupling amounts

to moving 
uids along streamlines. Streamlines represent the natural grid on which

to transport 
uids. The method therefore reduces grid orientation e�ects, numerical

di�usion, and most importantly it eliminates time step constraints due to stability.

The ability to take large time steps has resulted in speed-up factors up to three orders

of magnitude over conventional �nite-di�erence methods.

The major conclusions of this work are:

1. True 3D Multiwell Models

Use of streamlines rather than streamtubes allows straightforward modeling of

true 3D domains.

2. Fast Accurate Solutions

Tracer, water
ood, and �rst-contact miscible displacement comparisons indi-

cate that the streamline method is faster than conventional �nite di�erence
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techniques by factors of 1 to 3 orders of magnitude. As displacement complex-

ity and model size increase, the speed-up factors also increase. For FCM and

tracer displacements, the streamline method produces more accurate results due

to reduced levels of numerical di�usion. Water
ood displacements, which are

very stable, are not as a�ected by numerical artifacts. For these latter cases the

streamline method and conventional methods agree very well over a large range

of �eld models.

3. Fluid Movement Along Streamlines

Transporting 
uid along the natural streamline grid, rather than between dis-

crete gridblocks, o�ers several advantages. Most importantly, the underlying

grid stability constraints that limit 
uid movement in a conventional method

are removed in the streamline method. There is no global grid CFL condition

in the streamline method. Any size time step can be taken with the streamline

method between saturation or pressure updates. Furthermore, grid orientation

e�ects are substantially reduced in the streamline method.

4. Converged Solutions

The ability to take very large time steps in the streamline method introduces

a question of what maximum time step size can be taken before the pressure

�eld needs to be updated. The answer is dependent on the nonlinearities of the

displacement. For displacements dominated by heterogeneity, maximum front

speeds of about 25 gridblocks per time step were satisfactory for water
oods,

while maximum front speeds of about 5 gridblocks per time step were satisfac-

tory for FCM displacements. For gravity-dominated displacements, maximum

front speed movement was reduced to 1{2 gridblocks per time step to properly

account for the additional nonlinearity. It was also shown that the numerical

streamline method does converge as the maximum front movement is reduced to

the limiting case of a single gridblock per time step between pressure solutions.

5. Accurate Representation of Heterogeneity E�ects

Although the streamline method clearly has limitations, the most important
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advantage is that the method can account for more detail in heterogeneity. Ex-

ample cases in Chapters 4 and 5, demonstrated that the process of upscaling and

reducing permeability detail can lead to over optimistic predictions of reservoir

response.

6. Solution to Million Gridblock Size Models

The speed of the streamline method makes it well suited to solutions of very

large problems. Displacement results presented in Chapters 4 and 5 for multiwell

million gridblock models illustrate that solutions can be obtained on a standard

workstation. In contrast, the models were upscaled sixteen times in order to

run on the same machine with a conventional �nite-di�erence method. Thus,

the streamline method makes more e�cient use of �xed computer resources.

7. Extension to Field Scale Conditions

Common situations present in �eld scale simulations include gravity e�ects,

changing well conditions, and nonuniform saturation distributions present at

the start of production. By mapping numerical solutions along streamlines the

method can account for the above e�ects present in �eld scale displacements.



Nomenclature

Ak+ 1

2

= gridblock cross-sectional area between k and k + 1 gridblocks

~B = right hand side vector of pressure equation

C = tracer concentration

Cm = center of mass

Cs = solvent concentration

Di = depth of gridblock i from datum
~~Dij = dispersion coe�cient of component i in phase j

fj = fractional 
ow of phase j

fj;s = fractional 
ow of phase j at source or sink

fp = fraction 
ow at a producer

fsl = fraction 
ow assigned to a streamline

~Gj = gravity component of fraction 
ow of phase j

Gz;k+ 1

2

= inter-block gravity transmissibility in z direction

between k and k + 1 gridblocks

g = gravitational acceleration constant

H = height of 2D cross-sectional model

HI = heterogeneity index
~~K = absolute permeability tensor

Kh = average horizontal permeability

Kv = average vertical permeability

krj = relative permeability of phase j

L = distance between producer and injector

MAXblks= maximum blocks that a front can move in a time step

M = viscosity ratio

mx = velocity gradient across gridblock in x direction

Nsl
c = streamline Courant Number

Ng = Gravity Number

NPD = dimensionless recovery
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Nsl
pe = streamline Peclet Number

n = number of pressure time steps

np = number of phases

n
face
sl = number of streamlines launched from an injection face

P = pressure

~P = pressure vector in pressure equation

Qn = total �eld injection rate at nth time step

qface = 
ux across injection block face

qs = source or sink 
ow rate

qsl = 
ux assigned to a streamline

qsls = source/sink 
ow rate based on sum of streamline 
uxes

ro;k = Peaceman's radius of wellbore in layer k

rw;k = wellbore radius in layer k

Sj = saturation of phase j

�Sgb = average saturation of a gridblock

�Ssl = average saturation of a streamline within a gridblock

s = spatial distance coordinate along a streamline

sk = wellbore skin in layer k

T = transmissibility matrix

Tn = true time after nth time step

Tw
k = wellbore transmissibility of layer k

Tz;k+ 1

2

= inter-block transmissibility in z direction between k and k + 1 gridblocks

t = time

tD = dimensionless time

~uj = Darcy velocity of phase j

~ut = total Darcy velocity

V = interstitial velocity

Vblshock = Buckley-Leverett shock velocity

�Vp = average porevolume of a streamtube

Vst = volume of a streamtube

vD = dimensionless velocity

Wn
I = cumulative volume of injection phase injected at nth time step

Wn
P = cumulative volume of injection phase produced at nth time step

xD = dimensionless distance

xe = x position of streamline exit location

xi = x position of streamline inlet location

xo = x position of origin in a gridblock
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x; y; z = spatial coordinates

� = reservoir dip angle


i = mobility weighted wellbore speci�c gravity of layer i

�Ph = average pressure drop in horizontal direction

�� = 
uid density di�erence

�tc = time step size between convective steps

�te;x = time-of-
ight required to reach an x exit face

�tg = time step size along gravity line

�tp = time step size between pressure steps

�tsl = time step size along a streamline

�x = gridblock dimension in x direction

�y = gridblock dimension in y direction

�z = gridblock dimension in z direction

��sl = time-of-
ight increment along a streamline

� = local streamline coordinate

�c = permeability correlation length

�g = total gravity mobility

�t = total mobility

�j = viscosity of phase j

� = Archimedes number

�j = density of phase j

� = time of 
ight

� = potential function

� = porosity

	 = stream function

! = Todd & Longsta� mixing parameter

!i = weighting factor for a streamline in a gridblock

!ij = mass fraction of component i in phase j
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